198 research outputs found

    Cascaded VLSI neural network architecture for on-line learning

    Get PDF
    High-speed, analog, fully-parallel and asynchronous building blocks are cascaded for larger sizes and enhanced resolution. A hardware-compatible algorithm permits hardware-in-the-loop learning despite limited weight resolution. A comparison-intensive feature classification application has been demonstrated with this flexible hardware and new algorithm at high speed. This result indicates that these building block chips can be embedded as application-specific-coprocessors for solving real-world problems at extremely high data rates

    Adaptive Equalisation of Communication Channels Using ANN Techniques

    Get PDF
    Channel equalisation is a process of compensating the disruptive effects caused mainly by Inter Symbol Interference in a band-limited channel and plays a vital role for enabling higher data rate in digital communication. The development of new training algorithms, structures and the selection of the design parameters for equalisers are active fields of research which are exploiting the benefits of different signal processing techniques. Designing efficient equalisers based on low structural complexity, is also an area of much interest keeping in view of real-time implementation issue. However, it has been widely reported that optimal performance can only be realised using nonlinear equalisers. As Artificial Neural Networks are inherently nonlinear processing elements and possess capabilities of universal approximation and pattern classification, these are well suited for developing high performance adaptive equalisers. This proposed work has significantly contributed to the d..

    Current-Mode Techniques for the Implementation of Continuous- and Discrete-Time Cellular Neural Networks

    Get PDF
    This paper presents a unified, comprehensive approach to the design of continuous-time (CT) and discrete-time (DT) cellular neural networks (CNN) using CMOS current-mode analog techniques. The net input signals are currents instead of voltages as presented in previous approaches, thus avoiding the need for current-to-voltage dedicated interfaces in image processing tasks with photosensor devices. Outputs may be either currents or voltages. Cell design relies on exploitation of current mirror properties for the efficient implementation of both linear and nonlinear analog operators. These cells are simpler and easier to design than those found in previously reported CT and DT-CNN devices. Basic design issues are covered, together with discussions on the influence of nonidealities and advanced circuit design issues as well as design for manufacturability considerations associated with statistical analysis. Three prototypes have been designed for l.6-pm n-well CMOS technologies. One is discrete-time and can be reconfigured via local logic for noise removal, feature extraction (borders and edges), shadow detection, hole filling, and connected component detection (CCD) on a rectangular grid with unity neighborhood radius. The other two prototypes are continuous-time and fixed template: one for CCD and other for noise removal. Experimental results are given illustrating performance of these prototypes

    Design of Building Blocks for Trit Algorithm

    Get PDF
    This thesis attempts to design the building blocks for TRIT algorithm. PSPICE was used for simulation. The building blocks were laidout in Magic.Electrical Engineerin

    Hardware neural systems for applications: a pulsed analog approach

    Get PDF

    Neural networks : analog VLSI implementation and learning algorithms

    Get PDF

    Deep CNN and MLP-based vision systems for algae detection in automatic inspection of underwater pipelines

    Get PDF
    Artificial neural networks, such as the multilayer perceptron (MLP), have been increasingly employed in various applications. Recently, deep neural networks, specially convolutional neural networks (CNN), have received considerable attention due to their ability to extract and represent high-level abstractions in data sets. This work describes a vision inspection system based on deep learning and computer vision algorithms for detection of algae in underwater pipelines. The proposed algorithm comprises a CNN or a MLP network, followed by a post-processing stage operating in spatial and temporal domains, employing clustering of neighboring detection positions and a region interception framebuffer. The performances of MLP, employing different descriptors, and CNN classifiers are compared in real-world scenarios. It is shown that the post-processing stage considerably decreases the number of false positives, resulting in an accuracy rate of 99.39%.Redes neurais artificiais, como o perceptron multicamada (MLP), têm sido cada vez mais empregadas em várias aplicações. Recentemente, as redes neurais profundas (deep neural networks), especialmente as redes neurais convolutivas (CNN), receberam atenção considerável devido à sua capacidade de extrair e representar abstrações de alto nível em conjuntos de dados. Esta dissertação descreve um sistema de inspeção automático baseado em algoritmos de aprendizado profundo (deep learning) e visão computacional para detecção de algas em dutos submarinos. O algoritmo proposto compreende uma rede CNN ou MLP, seguida de uma fase de pós-processamento que opera em domínios espaciais e temporais, empregando agrupamento de posições de detecção vizinhas e um buffer das regiões de interseção ao longo dos quadros. Os desempenhos de MLP, empregando diferentes descritores, e os classificadores CNN são comparados em cenários do mundo real. Mostra-se que a fase de pos-processamento diminui consideravelmente o número de falsos positivos, resultando em uma taxa de acerto de 99,39%

    Novel Artificial Neural Network Application for Prediction of Inverse Kinematics of Robot Manipulator

    Get PDF
    The robot control problem can be divided into two main areas, kinematics control (the coordination of the links of kinematics chain to produce desire motion of the robot), and dynamic control (driving the actuator of the mechanism to follow the commanded position velocities). In general the control strategies used in robot involves position coordination in Cartesian space by direct or indirect kinematics method. Inverse kinematics comprises the computation need to find the join angles for a given Cartesian position and orientation of the end effectors. This computation is fundamental to control of robot arms but it is very difficult to calculate an inverse kinematics solution of robot manipulator. For this solution most industrial robot arms are designed by using a non-linear algebraic computation to finding the inverse kinematics solution. From the literature it is well described that there is no unique solution for the inverse kinematics. That is why it is significant to apply an artificial neural network models. Here structured artificial neural network (ANN) models an approach has been proposed to control the motion of robot manipulator. In these work two types of ANN models were used. The first kind ANN model is MLP (multi-layer perceptrons) which was famous as back propagation neural network model. In this network gradient descent type of learning rules are applied. The second kind of ANN model is PPN (polynomial poly-processor neural network) where polynomial equation was used. Here, work has been undertaken to find the best ANN configuration for the problem. It was found that between MLP and PPN, MLP gives better result as compared to PPN by considering average percentage error, as the performance index

    A novel off-line character recognition: an MLP approach

    Get PDF
    The purpose of this thesis work is to explore the possibility of efficient man-machine communication through printed documents. An attempt has been made to show the pattern recognition techniques i.e., KNN classifier helpful in recognition of machine printed characters and artificial neural networks may be used to represent and recognize printed English characters of any font and size. In our current work the machine printed document images are scanned by a front end video scanner and are applied to noise removal techniques using smoothing and sharpening filters. The noiseless images are digitized into a bi-level image using Ni-Black proposed binarization technique and proposed adaptive thresholding algorithm using Laplacian sign. Our work is split into three parts. The first part deals with segmentation and thinning. The output of this phase is thinned character image. The second part involves features are extracted from thinned image. The third part deals with KNN classifiers and training of the multilayer perceptron and recognizing characters after the system is trained. Automatic character recognition system promises to hold great future in Automatic office information processing system by integrating with multimedia, like Graphics, image and voice, into a single work station
    corecore