60 research outputs found

    A Fully Automatic Segmentation Method for Breast Ultrasound Images

    Get PDF
    Breast cancer is the second leading cause of death of women worldwide. Accurate lesion boundary detection is important for breast cancer diagnosis. Since many crucial features for discriminating benign and malignant lesions are based on the contour, shape, and texture of the lesion, an accurate segmentation method is essential for a successful diagnosis. Ultrasound is an effective screening tool and primarily useful for differentiating benign and malignant lesions. However, due to inherent speckle noise and low contrast of breast ultrasound imaging, automatic lesion segmentation is still a challenging task. This research focuses on developing a novel, effective, and fully automatic lesion segmentation method for breast ultrasound images. By incorporating empirical domain knowledge of breast structure, a region of interest is generated. Then, a novel enhancement algorithm (using a novel phase feature) and a newly developed neutrosophic clustering method are developed to detect the precise lesion boundary. Neutrosophy is a recently introduced branch of philosophy that deals with paradoxes, contradictions, antitheses, and antinomies. When neutrosophy is used to segment images with vague boundaries, its unique ability to deal with uncertainty is brought to bear. In this work, we apply neutrosophy to breast ultrasound image segmentation and propose a new clustering method named neutrosophic l-means. We compare the proposed method with traditional fuzzy c-means clustering and three other well-developed segmentation methods for breast ultrasound images, using the same database. Both accuracy and time complexity are analyzed. The proposed method achieves the best accuracy (TP rate is 94.36%, FP rate is 8.08%, and similarity rate is 87.39%) with a fairly rapid processing speed (about 20 seconds). Sensitivity analysis shows the robustness of the proposed method as well. Cases with multiple-lesions and severe shadowing effect (shadow areas having similar intensity values of the lesion and tightly connected with the lesion) are not included in this study

    A Novel Image Segmentation Algorithm Based on Neutrosophic Filtering and Level Set

    Get PDF
    Image segmentation is an important step in image processing and analysis, pattern recognition, and machine vision. A few of algorithms based on level set have been proposed for image segmentation in the last twenty years. However, these methods are time consuming, and sometime fail to extract the correct regions especially for noisy images. Recently, neutrosophic set (NS) theory has been applied to image processing for noisy images with indeterminant information. In this paper, a novel image segmentation approach is proposed based on the filter in NS and level set theory

    Review on Region-Based Segmentation Using Watershed and Region Growing Techniques and their Applications in Different Fields

    Get PDF
    In digital image processing and computer vision, segmentation operation for an image refers to dividing an image into multiple image segments, and the significant purpose of segmentation operation is to depict an image in a way so that the analysis process of the objects of interest is easier and more accurate. The region-based segmentation scheme act for finding similarities between adjacent pixels to detect each region that constructs the image. Similarity scales have based on different features, in a grayscale image, the scale may be referred to as textures and other spatial appearances, and also the variance in intensity of a region and so on. Significantly, many applications in different fields involved region-based segmentation for instance remote sensing, medical application, and others for recognizing interesting objects in an image. In this paper, two techniques for segmentation operation in region-based which are region growing and watershed are reviewed

    A Novel Image Segmentation Algorithm Based on Neutrosophic Filtering and Level Set

    Get PDF
    Image segmentation is an important step in image processing and analysis, pattern recognition, and machine vision. A few of algorithms based on level set have been proposed for image segmentation in the last twenty years. However, these methods are time consuming, and sometime fail to extract the correct regions especially for noisy images. Recently, neutrosophic set (NS) theory has been applied to image processing for noisy images with indeterminant information. In this paper, a novel image segmentation approach is proposed based on the filter in NS and level set theory. At first, the image is transformed into NS domain, which is described by three membership sets (T, I and F). Then, a filter is newly defined and employed to reduce the indeterminacy of the image. Finally, a level set algorithm is used in the image after filtering operation for image segmentation. Experiments have been conducted using different images. The results demonstrate that the proposed method can segment the images effectively and accurately. It is especially able to remove the noise effect and extract the correct regions on both the noise-free images and the images with different levels of noise

    Three-Dimensional GPU-Accelerated Active Contours for Automated Localization of Cells in Large Images

    Full text link
    Cell segmentation in microscopy is a challenging problem, since cells are often asymmetric and densely packed. This becomes particularly challenging for extremely large images, since manual intervention and processing time can make segmentation intractable. In this paper, we present an efficient and highly parallel formulation for symmetric three-dimensional (3D) contour evolution that extends previous work on fast two-dimensional active contours. We provide a formulation for optimization on 3D images, as well as a strategy for accelerating computation on consumer graphics hardware. The proposed software takes advantage of Monte-Carlo sampling schemes in order to speed up convergence and reduce thread divergence. Experimental results show that this method provides superior performance for large 2D and 3D cell segmentation tasks when compared to existing methods on large 3D brain images

    Neutro-Connectedness Theory, Algorithms and Applications

    Get PDF
    Connectedness is an important topological property and has been widely studied in digital topology. However, three main challenges exist in applying connectedness to solve real world problems: (1) the definitions of connectedness based on the classic and fuzzy logic cannot model the “hidden factors” that could influence our decision-making; (2) these definitions are too general to be applied to solve complex problem; and (4) many measurements of connectedness are heavily dependent on the shape (spatial distribution of vertices) of the graph and violate the intuitive idea of connectedness. This research focused on solving these challenges by redesigning the connectedness theory, developing fast algorithms for connectedness computation, and applying the newly proposed theory and algorithms to solve challenges in real problems. The newly proposed Neutro-Connectedness (NC) generalizes the conventional definitions of connectedness and can model uncertainty and describe the part and the whole relationship. By applying the dynamic programming strategy, a fast algorithm was proposed to calculate NC for general dataset. It is not just calculating NC map, and the output NC forest can discover a dataset’s topological structure regarding connectedness. In the first application, interactive image segmentation, two approaches were proposed to solve the two most difficult challenges: user interaction-dependence and intense interaction. The first approach, named NC-Cut, models global topologic property among image regions and reduces the dependence of segmentation performance on the appearance models generated by user interactions. It is less sensitive to the initial region of interest (ROI) than four state-of-the-art ROI-based methods. The second approach, named EISeg, provides user with visual clues to guide the interacting process based on NC. It reduces user interaction greatly by guiding user to where interacting can produce the best segmentation results. In the second application, NC was utilized to solve the challenge of weak boundary problem in breast ultrasound image segmentation. The approach can model the indeterminacy resulted from weak boundaries better than fuzzy connectedness, and achieved more accurate and robust result on our dataset with 131 breast tumor cases

    Reinforcing optimization enabled interactive approach for liver tumor extraction in computed tomography images

    Get PDF
    Detecting liver abnormalities is a difficult task in radiation planning and treatment. The modern development integrates medical imaging into computer techniques. This advancement has monumental effect on how medical images are interpreted and analyzed. In many circumstances, manual segmentation of liver from computerized tomography (CT) imaging is imperative, and cannot provide satisfactory results. However, there are some difficulties in segmenting the liver due to its uneven shape, fuzzy boundary and complicated structure. This leads to necessity of enabling optimization in interactive segmentation approach. The main objective of reinforcing optimization is to search the optimal threshold and reduce the chance of falling into local optimum with survival of the fittest (SOF) technique. The proposed methodology makes use of pre-processing stage and reinforcing meta heuristics optimization based fuzzy c-means (FCM) for obtaining detailed information about the image. This information gives the optimal threshold value that is used for segmenting the region of interest with minimum user input. Suspicious areas are recognized from the segmented output. Both public and simulated dataset have been taken for experimental purposes. To validate the effectiveness of the proposed strategy, performance criteria such as dice coefficient, mode and user interaction level are taken and compared with state-of-the-art algorithms
    corecore