5 research outputs found

    Risk Analysis Using Artificial Intelligence Algorithms to Prevent Collisions on Roadway Segments

    Get PDF
    This thesis focused on improving the risk analysis algorithms used in collision avoidance systems (CASs) designed to reduce the risk of three types of collision on roadway segments: animal-to-vehicle collisions, pedestrian-to-vehicle collisions, and pedestrian-to-pedestrian collisions. Currently available CASs use only one input indicator. This approach is limited as the CASs: apply a simple risk analysis algorithm based on a fixed threshold to identify risky situations; cannot simultaneously capture a variety of important collision contributing factors; and cannot combine multiple contributing factors into a single composite risk indicator. The goal of this thesis was to use artificial intelligence algorithms to create a composite risk indicator based on a combination of various input indicators. The thesis goal was achieved through four objectives: 1) Develop a fuzzy rule-based algorithm for a next generation roadside animal detection system; 2) Develop a fuzzy rule-based algorithm for a smart protection system to reduce the number of collisions with police officers on duty on the roadway; 3) Develop a semi-supervised machine learning algorithm for a smart protection system to reduce the number of collisions with police officers on duty on the roadway; and 4) Develop a risk analysis approach to evaluate physical distancing on urban sidewalks. Improvement of the existing risk analysis algorithm in objective 1 resulted in capturing driver behavior, animal behavior, and the spatial and temporal interaction between animal and vehicle. It also resulted in differentiating risk for following and leading vehicle and generating no-risk when vehicle passed from animal. Objectives 2 and 3 were part of the same CAS study. Improvement of the existing risk analysis algorithm in both objectives 2 and 3 resulted in capturing pedestrian behavior, driver behavior, the spatial and temporal interaction between pedestrian and vehicle with 94% accuracy when estimating all risk labels, and 88% success when identifying near miss collisions. Objective 4 successfully reflected the role of density and exposure time in the level of physical distancing. It could help decision-makers to select the most appropriate interventions (e.g., sidewalk expansion) for pedestrians to maintain physical distancing

    Risk Analysis Using Artificial Intelligence Algorithms to Prevent Collisions on Roadway Segments

    Get PDF
    This thesis focused on improving the risk analysis algorithms used in collision avoidance systems (CASs) designed to reduce the risk of three types of collision on roadway segments: animal-to-vehicle collisions, pedestrian-to-vehicle collisions, and pedestrian-to-pedestrian collisions. Currently available CASs use only one input indicator. This approach is limited as the CASs: apply a simple risk analysis algorithm based on a fixed threshold to identify risky situations; cannot simultaneously capture a variety of important collision contributing factors; and cannot combine multiple contributing factors into a single composite risk indicator. The goal of this thesis was to use artificial intelligence algorithms to create a composite risk indicator based on a combination of various input indicators. The thesis goal was achieved through four objectives: 1) Develop a fuzzy rule-based algorithm for a next generation roadside animal detection system; 2) Develop a fuzzy rule-based algorithm for a smart protection system to reduce the number of collisions with police officers on duty on the roadway; 3) Develop a semi-supervised machine learning algorithm for a smart protection system to reduce the number of collisions with police officers on duty on the roadway; and 4) Develop a risk analysis approach to evaluate physical distancing on urban sidewalks. Improvement of the existing risk analysis algorithm in objective 1 resulted in capturing driver behavior, animal behavior, and the spatial and temporal interaction between animal and vehicle. It also resulted in differentiating risk for following and leading vehicle and generating no-risk when vehicle passed from animal. Objectives 2 and 3 were part of the same CAS study. Improvement of the existing risk analysis algorithm in both objectives 2 and 3 resulted in capturing pedestrian behavior, driver behavior, the spatial and temporal interaction between pedestrian and vehicle with 94% accuracy when estimating all risk labels, and 88% success when identifying near miss collisions. Objective 4 successfully reflected the role of density and exposure time in the level of physical distancing. It could help decision-makers to select the most appropriate interventions (e.g., sidewalk expansion) for pedestrians to maintain physical distancing

    Identification of infrastructure related risk factors, Deliverable 5.1 of the H2020 project SafetyCube

    Get PDF
    The present Deliverable (D5.1) describes the identification and evaluation of infrastructure related risk factors. It outlines the results of Task 5.1 of WP5 of SafetyCube, which aimed to identify and evaluate infrastructure related risk factors and related road safety problems by (i) presenting a taxonomy of infrastructure related risks, (ii) identifying “hot topics” of concern for relevant stakeholders and (iii) evaluating the relative importance for road safety outcomes (crash risk, crash frequency and severity etc.) within the scientific literature for each identified risk factor. To help achieve this, Task 5.1 has initially exploited current knowledge (e.g. existing studies) and, where possible, existing accident data (macroscopic and in-depth) in order to identify and rank risk factors related to the road infrastructure. This information will help further on in WP5 to identify countermeasures for addressing these risk factors and finally to undertake an assessment of the effects of these countermeasures. In order to develop a comprehensive taxonomy of road infrastructure-related risks, an overview of infrastructure safety across Europe was undertaken to identify the main types of road infrastructure-related risks, using key resources and publications such as the European Road Safety Observatory (ERSO), The Handbook of Road Safety Measures (Elvik et al., 2009), the iRAP toolkit and the SWOV factsheets, to name a few. The taxonomy developed contained 59 specific risk factors within 16 general risk factors, all within 10 infrastructure elements. In addition to this, stakeholder consultations in the form of a series of workshops were undertaken to prioritise risk factors (‘hot topics’) based on the feedback from the stakeholders on which risk factors they considered to be the most important or most relevant in terms of road infrastructure safety. The stakeholders who attended the workshops had a wide range of backgrounds (e.g. government, industry, research, relevant consumer organisations etc.) and a wide range of interests and knowledge. The identified ‘hot topics’ were ranked in terms of importance (i.e. which would have the greatest effect on road safety). SafetyCube analysis will put the greatest emphasis on these topics (e.g. pedestrian/cyclist safety, crossings, visibility, removing obstacles). To evaluate the scientific literature, a methodology was developed in Work Package 3 of the SafetyCube project. WP5 has applied this methodology to road infrastructure risk factors. This uniformed approach facilitated systematic searching of the scientific literature and consistent evaluation of the evidence for each risk factor. The method included a literature search strategy, a ‘coding template’ to record key data and metadata from individual studies, and guidelines for summarising the findings (Martensen et al, 2016b). The main databases used in the WP5 literature search were Scopus and TRID, with some risk factors utilising additional database searches (e.g. Google Scholar, Science Direct). Studies using crash data were considered highest priority. Where a high number of studies were found, further selection criteria were applied to ensure the best quality studies were included in the analysis (e.g. key meta-analyses, recent studies, country origin, importance). Once the most relevant studies were identified for a risk factor, each study was coded within a template developed in WP3. Information coded for each study included road system element, basic study information, road user group information, study design, measures of exposure, measures of outcomes and types of effects. The information in the coded templates will be included in the relational database developed to serve as the main source (‘back end’) of the Decision Support System (DSS) being developed for SafetyCube. Each risk factor was assigned a secondary coding partner who would carry out the control procedure and would discuss with the primary coding partner any coding issues they had found. Once all studies were coded for a risk factor, a synopsis was created, synthesising the coded studies and outlining the main findings in the form of meta-analyses (where possible) or another type of comprehensive synthesis (e.g. vote-count analysis). Each synopsis consists of three sections: a 2 page summary (including abstract, overview of effects and analysis methods); a scientific overview (short literature synthesis, overview of studies, analysis methods and analysis of the effects) and finally supporting documents (e.g. details of literature search and comparison of available studies in detail, if relevant). To enrich the background information in the synopses, in-depth accident investigation data from a number of sources across Europe (i.e. GIDAS, CARE/CADaS) was sourced. Not all risk factors could be enhanced with this data, but where it was possible, the aim was to provide further information on the type of crash scenarios typically found in collisions where specific infrastructure-related risk factors are present. If present, this data was included in the synopsis for the specific risk factor. After undertaking the literature search and coding of the studies, it was found that for some risk factors, not enough detailed studies could be found to allow a synopsis to be written. Therefore, the revised number of specific risk factors that did have a synopsis written was 37, within 7 infrastructure elements. Nevertheless, the coded studies on the remaining risk factors will be included in the database to be accessible by the interested DSS users. At the start of each synopsis, the risk factor is assigned a colour code, which indicates how important this risk factor is in terms of the amount of evidence demonstrating its impact on road safety in terms of increasing crash risk or severity. The code can either be Red (very clear increased risk), Yellow (probably risky), Grey (unclear results) or Green (probably not risky). In total, eight risk factors were given a Red code (e.g. traffic volume, traffic composition, road surface deficiencies, shoulder deficiencies, workzone length, low curve radius), twenty were given a Yellow code (e.g. secondary crashes, risks associated with road type, narrow lane or median, roadside deficiencies, type of junction, design and visibility at junctions) seven were given a Grey code (e.g. congestion, frost and snow, densely spaced junctions etc.). The specific risk factors given the red code were found to be distributed across a range of infrastructure elements, demonstrating that the greatest risk is spread across several aspects of infrastructure design and traffic control. However, four ‘hot topics’ were rated as being risky, which were ‘small work-zone length’, ‘low curve radius’, ‘absence of shoulder’ and ‘narrow shoulder’. Some limitations were identified. Firstly, because of the method used to attribute colour code, it is in theory possible for a risk factor with a Yellow colour code to have a greater overall magnitude of impact on road safety than a risk factor coded Red. This would occur if studies reported a large impact of a risk factor but without sufficient consistency to allocate a red colour code. Road safety benefits should be expected from implementing measures to mitigate Yellow as well as Red coded infrastructure risks. Secondly, findings may have been limited by both the implemented literature search strategy and the quality of the studies identified, but this was to ensure the studies included were of sufficiently high quality to inform understanding of the risk factor. Finally, due to difficulties of finding relevant studies, it was not possible to evaluate the effects on road safety of all topics listed in the taxonomy. The next task of WP5 is to begin identifying measures that will counter the identified risk factors. Priority will be placed on investigating measures aimed to mitigate the risk factors identified as Red. The priority of risk factors in the Yellow category will depend on why they were assigned to this category and whether or not they are a hot topic

    Intelligent Transportation Related Complex Systems and Sensors

    Get PDF
    Building around innovative services related to different modes of transport and traffic management, intelligent transport systems (ITS) are being widely adopted worldwide to improve the efficiency and safety of the transportation system. They enable users to be better informed and make safer, more coordinated, and smarter decisions on the use of transport networks. Current ITSs are complex systems, made up of several components/sub-systems characterized by time-dependent interactions among themselves. Some examples of these transportation-related complex systems include: road traffic sensors, autonomous/automated cars, smart cities, smart sensors, virtual sensors, traffic control systems, smart roads, logistics systems, smart mobility systems, and many others that are emerging from niche areas. The efficient operation of these complex systems requires: i) efficient solutions to the issues of sensors/actuators used to capture and control the physical parameters of these systems, as well as the quality of data collected from these systems; ii) tackling complexities using simulations and analytical modelling techniques; and iii) applying optimization techniques to improve the performance of these systems. It includes twenty-four papers, which cover scientific concepts, frameworks, architectures and various other ideas on analytics, trends and applications of transportation-related data

    Akteursorientierte multimodale Straßenverkehrssimulation

    Get PDF
    Die vorliegende Dissertation behandelt die Entwicklung eines Verkehrssimulationssystems, welches vollautomatisch aus Landkarten Simulationsgraphen erstellen kann. Der Fokus liegt bei urbanen Simulationsstudien in beliebigen Gemeinden und Städten. Das zweite fundamentale Standbein dieser Arbeit ist daher die Konstruktion von Verkehrsmodellen, die die wichtigsten Verkehrsteilnehmertypen im urbanen Bereich abbilden. Es wurden Modelle für Autos, Fahrräder und Fußgänger entwickelt. Die Betrachtung des Stands der Forschung in diesem Bereich hat ergeben, dass die Verknüpfung von automatischer Grapherstellung und Modellen, die die Wechselwirkungen der verschiedenen Verkehrsteilnehmertypen abbilden, von keinem vorhandenen System geleistet wird. Es gibt grundlegend zwei Gruppen von Verkehrssimulationssystemen. Zum Einen existieren Systeme, die hohe Genauigkeiten an Simulationsergebnissen erzielen und dafür exakte (teil-)manuelle Modellierung der Gegebenheiten im zu simulierenden Bereich benötigen. Es werden in diesem Bereich meist Verkehrsmodelle simuliert, die die Verhaltensweisen der Verkehrsteilnehmer sehr gut abbilden und hierfür einen hohen Berechnungsaufwand benötigen. Auf der anderen Seiten existieren Simulationssysteme, die Straßengraphen automatisch erstellen können, darauf jedoch sehr vereinfachte Verkehrsmodelle simulieren. Es werden meist nur Autobewegungen simuliert. Der Nutzen dieser Herangehensweise ist die Möglichkeit, sehr große Szenarien simulieren zu können. Im Rahmen dieser Arbeit wird ein System mit Eigenschaften beider grundlegenden Ansätze entwickelt, um multimodalen innerstädtischen Verkehr auf Basis automatisch erstellter Straßengraphen simulieren zu können. Die Entwicklung eines neuen Verkehrssimulationssystems erschien notwendig, da sich zum Zeitpunkt der Literaturbetrachtung kein anderes vorhandenes System für die Nutzung zur Erfüllung der genannten Zielstellung eignete. Das im Rahmen dieser Arbeit entwickelte System heißt MAINSIM (MultimodAle INnerstädtische VerkehrsSIMulation). Die Simulationsgraphen werden aus Kartenmaterial von OpenStreetMap extrahiert. Kartenmaterial wird zuerst in verschiedene logische Layer separiert und anschließend zur Bestimmung eines Graphen des Straßennetzes genutzt. Eine Gruppe von Analyseschritten behebt Ungenauigkeiten im Kartenmaterial und ergänzt Informationen, die während der Simulation benötigt werden (z.B. die Verbindungsrichtung zwischen zwei Straßen). Das System verwendet Geoinformationssystemkomponenten zur Verarbeitung der Geodaten. Dies birgt den Vorteil der einfachen Erweiterbarkeit um weitere Datenquellen. Die Verkehrssimulation verwendet mikroskopische Verhaltensmodelle. Jeder einzelne Verkehrsteilnehmer wird somit simuliert. Das Modell für Autos basiert auf dem in der Verkehrsforschung weit genutzten Nagel-Schreckenberg-Modell. Es verfügt jedoch über zahlreiche Modifikationen und Erweiterungen, um das Modell auch abseits von Autobahnen nutzen zu können und weitere Verhaltensweisen zu modellieren. Das Fahrradmodell entsteht durch geeignete Parametrisierung aus dem Automodell. Zur Entwicklung des Fußgängermodells wurde Literatur über das Verhalten von Fußgängern diskutiert, um daraus geeignete Eigenschaften (z.B. Geschwindigkeiten und Straßenüberquerungsverhaltensmuster) abzuleiten. MAINSIM ermöglicht folglich die Betrachtung des Verkehrsgeschehens auch aus der Sicht der Gruppe der Fußgänger oder Fahrradfahrer und kann deren Auswirkungen auf den Straßenverkehr einer ganzen Stadt bestimmen. Das Automodell wurde auf Autobahnszenarien und innerstädtischen Straßengraphen evaluiert. Es konnte die gut verstandenen Zusammenhänge zwischen Verkehrsdichte, -fluss und -geschwindigkeit reproduzieren. Zur Evaluierung von Fahrradmodellen liegen nach dem besten Wissen des Autors keine Studien vor. Daher wurden an dieser Stelle der Einfluss der Fahrradfahrer auf den Straßenverkehr und die von Fahrrädern gefahrenen Geschwindigkeiten untersucht. Das Fußgängermodell konnte die aus der Literaturbetrachtung ermittelten Verhaltensweisen abbilden. Nachdem die wichtigsten Komponenten von MAINSIM untersucht wurden, begannen Fallstudien, die verschiedene Gebiete abdecken. Die wichtigsten Ergebnisse aus diesem Teil der Arbeit sind: - Es ist möglich, mit Hilfe maschineller Lernverfahren Staus innerhalb Frankfurts vorherzusagen. - Nonkonformismus bezüglich der Verkehrsregeln kann je nach Verhalten den Verkehrsfluss empfindlich beeinflussen, kann aber auch ohne Effekt bleiben. - Mit Hilfe von Kommunikationstechniken könnte in der Zukunft die Routenplanung von Autos verbessert werden. Ein Verfahren auf Basis von Pheromonspuren wurde im Rahmen dieser Arbeit untersucht. - MAINSIM eignet sich zur Simulation großer Szenarien. In der letzten Fallstudie dieser Arbeit wurde der Autoverkehr eines Simulationsgebietes um Frankfurt am Main herum mit ca. 1,6 Mio. Trips pro Tag simuliert. Da MAINSIM über ein Kraftstoffverbrauchs- und CO2-Emissionsmodell verfügt, konnten die CO2-Emissionen innerhalb von Frankfurt ermittelt werden. Eine angekoppelte Simulation des Wetters mit Hilfe einer atmosphärischen Simulation zeigte, wie sich die Gase innerhalb Frankfurts verteilen. Für den professionellen Einsatz in der Verkehrsforschung muss das entwickelte Simulationssystem um eine Methode zur Kalibrierung auf Sensordaten im Simulationsgebiet erweitert werden. Die vorhandenen Ampelschaltungen bilden nicht reale Ampeln ab. Eine Erweiterung des Systems um die automatische Integrierung maschinell lesbarer Schaltpläne von Ampeln im Bereich des Simulationsgebietes würde die Ergebnisgüte weiter erhöhen. MAINSIM hat mehrere Anwendungsgebiete. Es können sehr schnell Simulationsgebiete modelliert werden. Daher bietet sich die Nutzung für Vorabstudien an. Wenn große Szenarien simuliert werden müssen, um z.B. die Verteilung der CO2-Emissionen innerhalb einer Stadt zu ermitteln, kann MAINSIM genutzt werden. Es hat sich im Rahmen dieser Arbeit gezeigt, dass Fahrräder und Fußgänger einen Effekt auf die Mengen des Kraftstoffverbrauchs von Autos haben können. Es sollte bei derartigen Szenarien folglich ein Simulationssysytem genutzt werden, welches die relevanten Verkehrsteilnehmertypen abbilden kann. Zur Untersuchung weiterer wissenschaftlicher Fragestellungen kann MAINSIM beliebig erweitert werden
    corecore