421 research outputs found

    Performance analysis under finite load and improvements for multirate 802.11

    Get PDF
    Automatic rate adaptation in CSMA/CA wireless networks may cause drastic throughput degradation for high speed bit rate stations (STAs). The CSMA/CA medium access method guarantees equal long-term channel access probability to all hosts when they are saturated. In previous work it has been shown that the saturation throughput of any STA is limited by the saturation throughput of the STA with the lowest bit rate in the same infrastructure. In order to overcome this problem, we ¯rst introduce in this paper a new model for ¯nite load sources with multirate capabilities. We use our model to investigate the throughput degradation outside and inside the saturation regime. We de¯ne a new fairness index based on the channel occupation time to have more suitable de¯nition of fairness in multirate environments. Further, we propose two simple but powerful mechanisms to partly bypass the observed decline in performance and meet the proposed fairness. Finally, we use our model for ¯nite load sources to evaluate our proposed mechanisms in terms of total throughput and MAC layer delay for various network con¯gurations

    CARLA: combining Cooperative Relaying and Link Adaptation for IEEE 802.11 wireless networks

    Get PDF

    A control theoretic approach to achieve proportional fairness in 802.11e EDCA WLANs

    Get PDF
    This paper considers proportional fairness amongst ACs in an EDCA WLAN for provision of distinct QoS requirements and priority parameters. A detailed theoretical analysis is provided to derive the optimal station attempt probability which leads to a proportional fair allocation of station throughputs. The desirable fairness can be achieved using a centralised adaptive control approach. This approach is based on multivariable statespace control theory and uses the Linear Quadratic Integral (LQI) controller to periodically update CWmin till the optimal fair point of operation. Performance evaluation demonstrates that the control approach has high accuracy performance and fast convergence speed for general network scenarios. To our knowledge this might be the first time that a closed-loop control system is designed for EDCA WLANs to achieve proportional fairness

    Cross-layer based erasure code to reduce the 802.11 performance anomaly : when FEC meets ARF

    Get PDF
    Wireless networks have been widely accepted and deployed in our world nowadays. Consumers are now accustomed to wireless connectivity in their daily life due to the pervasive- ness of the 802.11b/g and wireless LAN standards. Specially, the emergence of the next evolution of Wi-Fi technology known as 802.11n is pushing a new revolution on personal wireless communication. However, in the context of WLAN, although multiple novel wireless access technologies have been proposed and developed to offer high bandwidth and guarantee quality of transmission, some deficiencies still remain due to the original design of WLAN-MAC layer. In particular, the performance anomaly of 802.11 is a serious issue which induces a potentially dramatic reduction of the global bandwidth when one or several mobile nodes downgrade their transmission rates following the signal degradation. In this paper, we study how the use of adaptive erasure code as a replacement of the Auto Rate Feedback mechanism can help to mitigate this performance anomaly issue. Preliminary study shows a global increase of the goodput delivered to mobile hosts attached to an access point

    CORELA: a cooperative relaying enhanced link adaptation algorithm for IEEE 802.11 WLANs

    Get PDF

    A Multirate MAC Protocol for Reliable Multicast in Multihop Wireless Networks

    Get PDF
    Many multicast applications, such as audio/video streaming, file sharing or emergency reporting, are becoming quite common in wireless mobile environment, through the widespread deployment of 802.11-based wirelessnetworks. However, despite the growing interest in the above applications, the current IEEE 802.11 standard does not offer any medium access control (MAC) layer support to the efficient and reliable provision of multicast services. It does not provide any MAC-layer recovery mechanism for unsuccessful multicast transmissions. Consequently, lost frames cannot be detected, hence retransmitted, causing a significant quality of service degradation. In addition, 802.11 multicast traffic is sent at the basic data rate, often resulting in severe throughput reduction. In this work, we address these issues by presenting areliablemulticastMACprotocol for wirelessmultihopnetworks, which is coupled with a lightweight rate adaptation scheme. Simulation results show that our schemes provide high packet delivery ratio and when compared with other state-of-the-art solutions, they also provide reduced control overhead and data delivery dela

    Experimental Study of Multirate Margin in Software Defined Multirate Radio

    Get PDF
    Due to the recent development of spectrally-efficient modulation schemes, IEEE 802.11 Wifi and IEEE 802.16 WiMax radios support wireless communication at multiple bit rates. While high-rate transmission allows delivering more information in less time, the corresponding performance improvement is less than expected due to the PHY- and MAC-layer overheads, imposed by the 802.11/16 standards. This is particularly true in wireless ad hoc networks as there exist rate-distance and rate-hop count tradeoffs. The concept of multi-rate margin is proposed in this thesis, which exploits the difference in communication characteristics at different rates and serves as the fundamental ingredient for an opportunistic transmission protocol, targeted to meliorate the ad hoc mobile wireless network performance. In this thesis, the multi-rate margin is analyzed with theoretical derivation, perceived with simulation result using MATLAB and observed through real world testing using USRP and GNU Radio, which is a recent implementation of Software Defined Radi

    Aggregation with fragment retransmission for very high-speed WLANs

    Get PDF
    In upcoming very high-speed WLANs the physical layer (PHY) rate may reach 600 Mbps. To achieve high efficiency at the medium access control (MAC) layer, we identify fundamental properties that must be satisfied by any CSMA/CA based MAC layer and develop a novel scheme called Aggregation with Fragment Retransmission (AFR). In the AFR scheme, multiple packets are aggregated into and transmitted in a single large frame. If errors happen during the transmission, only the corrupted fragments of the large frame are retransmitted. An analytic model is developed to evaluate the throughput and delay performance of AFR over a noisy channel, and to compare AFR with competing schemes in the literature. Optimal frame and fragment sizes are calculated using this model. Transmission delays are minimised by using a zero-waiting mechanism where frames are transmitted immediately once the MAC wins a transmission opportunity. We prove that zero waiting can achieve maximum throughput. As a complement to the theoretical analysis, we investigate by simulations the impact of AFR on the performance of realistic application traffic with diverse requirements. We have implemented the AFR scheme in the NS-2 simulator and present detailed results for TCP, VoIP and HDTV traffic. The AFR scheme described was developed as part of the 802.11n working group work. The analysis presented here is general enough to be extended to the proposed scheme in the upcoming 802.11n standard. Trends indicated by our simulation results should extend to any well-designed aggregation scheme
    corecore