488 research outputs found

    A Low-Energy Fast Cyber Foraging Mechanism for Mobile Devices

    Full text link
    The ever increasing demands for using resource-constrained mobile devices for running more resource intensive applications nowadays has initiated the development of cyber foraging solutions that offload parts or whole computational intensive tasks to more powerful surrogate stationary computers and run them on behalf of mobile devices as required. The choice of proper mix of mobile devices and surrogates has remained an unresolved challenge though. In this paper, we propose a new decision-making mechanism for cyber foraging systems to select the best locations to run an application, based on context metrics such as the specifications of surrogates, the specifications of mobile devices, application specification, and communication network specification. Experimental results show faster response time and lower energy consumption of benched applications compared to when applications run wholly on mobile devices and when applications are offloaded to surrogates blindly for execution.Comment: 12 pages, 7 figures, International Journal of Wireless & Mobile Networks (IJWMN

    A Self-Aware and Scalable Solution for Efficient Mobile-Cloud Hybrid Robotics

    Get PDF
    Backed by the virtually unbounded resources of the cloud, battery-powered mobile robotics can also benefit from cloud computing, meeting the demands of even the most computationally and resource-intensive tasks. However, many existing mobile-cloud hybrid (MCH) robotic tasks are inefficient in terms of optimizing trade-offs between simultaneously conflicting objectives, such as minimizing both battery power consumption and network usage. To tackle this problem we propose a novel approach that can be used not only to instrument an MCH robotic task but also to search for its efficient configurations representing compromise solution between the objectives. We introduce a general-purpose MCH framework to measure, at runtime, how well the tasks meet these two objectives. The framework employs these efficient configurations to make decisions at runtime, which are based on: (1) changing of the environment (i.e., WiFi signal level variation), and (2) itself in a changing environment (i.e., actual observed packet loss in the network). Also, we introduce a novel search-based multi-objective optimization (MOO) algorithm, which works in two steps to search for efficient configurations of MCH applications. Analysis of our results shows that: (i) using self-adaptive and self-aware decisions, an MCH foraging task performed by a battery-powered robot can achieve better optimization in a changing environment than using static offloading or running the task only on the robot. However, a self-adaptive decision would fall behind when the change in the environment happens within the system. In such a case, a self-aware system can perform well, in terms of minimizing the two objectives. (ii) The Two-Step algorithm can search for better quality configurations for MCH robotic tasks of having a size from small to medium scale, in terms of the total number of their offloadable modules

    A game-theoretic approach to computation offloading in mobile cloud computing

    Get PDF
    We consider a three-tier architecture for mobile and pervasive computing scenarios, consisting of a local tier ofmobile nodes, a middle tier (cloudlets) of nearby computing nodes, typically located at the mobile nodes access points but characterized by a limited amount of resources, and a remote tier of distant cloud servers, which have practically infinite resources. This architecture has been proposed to get the benefits of computation offloading from mobile nodes to external servers while limiting the use of distant servers whose higher latency could negatively impact the user experience. For this architecture, we consider a usage scenario where no central authority exists and multiple non-cooperative mobile users share the limited computing resources of a close-by cloudlet and can selfishly decide to send their computations to any of the three tiers. We define a model to capture the users interaction and to investigate the effects of computation offloading on the users’ perceived performance. We formulate the problem as a generalized Nash equilibrium problem and show existence of an equilibrium.We present a distributed algorithm for the computation of an equilibrium which is tailored to the problem structure and is based on an in-depth analysis of the underlying equilibrium problem. Through numerical examples, we illustrate its behavior and the characteristics of the achieved equilibria

    Improving efficiency, scalability and efficacy of adaptive computation offloading in pervasive computing environments

    Get PDF
    As computing becomes more mobile and pervasive, there is a growing demand for increasingly rich, and therefore more computationally heavy, applications to run in mobile spaces. However, there exists a disparity between mobile platforms and the desktop environments upon which computationally heavy applications have traditionally run, which is likely to persist as both domains evolve at a competing pace. Consequently, an active research area is Adaptive Computation Offloading or cyber foraging that dynamically distributes application functionality to available peer devices according to resource availability and application behaviour. Integral to any offloading strategy is an adaptive decision making algorithm that computes the optimal placement of application components to remote devices based on changing environmental context. As this decision is typically computed by constrained devices and may occur frequently in dynamic environments, such algorithms should be both resource efficient and yield efficacious adaptation results. However, existing adaptive offloading approaches incur a number of overheads, which limit their applicability in mobile and pervasive spaces. This thesis is concerned with improving upon these limitations by specifically focusing on the efficiency, scalability and efficacy aspects of two major sub processes of adaptation: 1) Adaptive Candidate Device Selection and 2) Adaptive Object Topology Computation. To this end, three novel approaches are proposed. Firstly, a distributed approach to candidate device selection, which reduces the need to communicate collaboration metrics, and allows for the partial distribution of adaptation decision-making, is proposed. The approach is shown to reduce network consumption by over 90% and power consumption by as much as 96%, while maintaining linear memory complexity in contrast to the quadratic complexity of an existing approach. Hence, the approach presents a more efficient and scalable alternative for candidate device selection in mobile and pervasive environments. Secondly, with regards to the efficacy of adaptive object topology computation, a new type of adaptation granularity that combines the efficacy of fine-grained adaptation with the efficiency of coarse level approaches is proposed. The approach is shown to improve the efficacy of adaptation decisions by reducing network overheads by a minimum of 17% to as much 99%, while maintaining comparable decision making efficiency to coarse level adaptation. Thirdly, with regards to efficiency and scalability of object topology computation, a novel distributed approach to computing adaptation decisions is proposed, in which each device maintains a distributed local application sub-graph, consisting only of components in its own memory space. The approach is shown to reduce network cost by 100%, collaboration-wide memory cost by between 37% and 50%, battery usage by between 63% and 93%, and adaptation time by between 19% and 98%. Lastly, since improving the utility of adaptation in mobile and pervasive environments requires the simultaneous improvement of its sub processes, an adaptation engine, which consolidates the individual approaches presented above, is proposed. The consolidated adaptation engine is shown to improve the overall efficiency, scalability and efficacy of adaptation under a varying range of environmental conditions, which simulate dynamic and heterogeneous mobile environments
    • …
    corecore