62 research outputs found

    Spectral–Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network

    Get PDF
    Recent research has shown that using spectral–spatial information can considerably improve the performance of hyperspectral image (HSI) classification. HSI data is typically presented in the format of 3D cubes. Thus, 3D spatial filtering naturally offers a simple and effective method for simultaneously extracting the spectral–spatial features within such images. In this paper, a 3D convolutional neural network (3D-CNN) framework is proposed for accurate HSI classification. The proposed method views the HSI cube data altogether without relying on any preprocessing or post-processing, extracting the deep spectral–spatial-combined features effectively. In addition, it requires fewer parameters than other deep learning-based methods. Thus, the model is lighter, less likely to over-fit, and easier to train. For comparison and validation, we test the proposed method along with three other deep learning-based HSI classification methods—namely, stacked autoencoder (SAE), deep brief network (DBN), and 2D-CNN-based methods—on three real-world HSI datasets captured by different sensors. Experimental results demonstrate that our 3D-CNN-based method outperforms these state-of-the-art methods and sets a new record

    Spatial fuzzy c-mean sobel algorithm with grey wolf optimizer for MRI brain image segmentation

    Get PDF
    Segmentation is the process of dividing the original image into multiple sub regions called segments in such a way that there is no intersection between any two regions. In medical images, the segmentation is hard to obtain due to the intensity similarity among various regions and the presence of noise in medical images. One of the most popular segmentation algorithms is Spatial Fuzzy C-means (SFCM). Although this algorithm has a good performance in medical images, it suffers from two issues. The first problem is lack of a proper strategy for point initialization step, which must be performed either randomly or manually by human. The second problem of SFCM is having inaccurate segmented edges. The goal of this research is to propose a robust medical image segmentation algorithm that overcomes these weaknesses of SFCM for segmenting magnetic resonance imaging (MRI) brain images with less human intervention. First, in order to find the optimum initial points, a histogram based algorithm in conjunction with Grey Wolf Optimizer (H-GWO) is proposed. The proposed H-GWO algorithm finds the approximate initial point values by the proposed histogram based method and then by taking advantage of GWO, which is a soft computing method, the optimum initial values are found. Second, in order to enhance SFCM segmentation process and achieve higher accurate segmented edges, an edge detection algorithm called Sobel was utilized. Therefore, the proposed hybrid SFCM-Sobel algorithm first finds the edges of the original image by Sobel edge detector algorithm and finally extends the edges of SFCM segmented images to the edges that are detected by Sobel. In order to have a robust segmentation algorithm with less human intervention, the H-GWO and SFCM-Sobel segmentation algorithms are integrated to have a semi-automatic robust segmentation algorithm. The results of the proposed H-GWO algorithms show that optimum initial points are achieved and the segmented images of the SFCM-Sobel algorithm have more accurate edges as compared to recent algorithms. Overall, quantitative analysis indicates that better segmentation accuracy is obtained. Therefore, this algorithm can be utilized to capture more accurate segmented in images in the era of medical imaging

    Detection And Classification Of Buried Radioactive Materials

    Get PDF
    This dissertation develops new approaches for detection and classification of buried radioactive materials. Different spectral transformation methods are proposed to effectively suppress noise and to better distinguish signal features in the transformed space. The contributions of this dissertation are detailed as follows. 1) Propose an unsupervised method for buried radioactive material detection. In the experiments, the original Reed-Xiaoli (RX) algorithm performs similarly as the gross count (GC) method; however, the constrained energy minimization (CEM) method performs better if using feature vectors selected from the RX output. Thus, an unsupervised method is developed by combining the RX and CEM methods, which can efficiently suppress the background noise when applied to the dimensionality-reduced data from principle component analysis (PCA). 2) Propose an approach for buried target detection and classification, which applies spectral transformation followed by noisejusted PCA (NAPCA). To meet the requirement of practical survey mapping, we focus on the circumstance when sensor dwell time is very short. The results show that spectral transformation can alleviate the effects from spectral noisy variation and background clutters, while NAPCA, a better choice than PCA, can extract key features for the following detection and classification. 3) Propose a particle swarm optimization (PSO)-based system to automatically determine the optimal partition for spectral transformation. Two PSOs are incorporated in the system with the outer one being responsible for selecting the optimal number of bins and the inner one for optimal bin-widths. The experimental results demonstrate that using variable bin-widths is better than a fixed bin-width, and PSO can provide better results than the traditional Powell’s method. 4) Develop parallel implementation schemes for the PSO-based spectral partition algorithm. Both cluster and graphics processing units (GPU) implementation are designed. The computational burden of serial version has been greatly reduced. The experimental results also show that GPU algorithm has similar speedup as cluster-based algorithm

    Hemodynamic Analysis for Cognitive Load Assessment and Classification in Motor Learning Tasks Using Type-2 Fuzzy Sets

    Get PDF
    The paper addresses a novel approach to assess and classify the cognitive load of subjects from their hemodynamic response while engaged in motor learning tasks, such as vehicle-driving. A set of complex motor-activity-learning stimuli for braking, steering-control and acceleration is prepared to experimentally measure and classify the cognitive load of the car-drivers in three distinct classes: High, Medium and Low. New models of General and Interval Type-2 Fuzzy classifiers are proposed to reduce the scope of uncertainty in cognitive load classification due to the fluctuation of the hemodynamic features within and across sessions. The proposed classifiers offer high classification accuracy over 96%, leaving behind the traditional type-1/type-2 fuzzy and other standard classifiers. Experiments undertaken also offer a deep biological insight concerning the shift of brain-activations from the orbito-frontal to the ventro-lateral prefrontal cortex during high-to-low transition in cognitive load. Further, the activation of the dorsolateral prefrontal cortex is also reduced during low cognitive load of subjects. The proposed research outcome may directly be utilized to identify driving learners with low cognitive load for difficult motor learning tasks, such as taking a U-turn in a narrow space and motion control on the top of a bridge to avoid possible collision with the car ahead
    • …
    corecore