560 research outputs found

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Computational intelligence techniques for data analysis

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Population Descent: A Natural-Selection Based Hyper-Parameter Tuning Framework

    Full text link
    First-order gradient descent has been the base of the most successful optimization algorithms ever implemented. On supervised learning problems with very high dimensionality, such as neural network optimization, it is almost always the algorithm of choice, mainly due to its memory and computational efficiency. However, it is a classical result in optimization that gradient descent converges to local minima on non-convex functions. Even more importantly, in certain high-dimensional cases, escaping the plateaus of large saddle points becomes intractable. On the other hand, black-box optimization methods are not sensitive to the local structure of a loss function's landscape but suffer the curse of dimensionality. Instead, memetic algorithms aim to combine the benefits of both. Inspired by this, we present Population Descent, a memetic algorithm focused on hyperparameter optimization. We show that an adaptive m-elitist selection approach combined with a normalized-fitness-based randomization scheme outperforms more complex state-of-the-art algorithms by up to 13% on common benchmark tasks

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    Advances in Evolutionary Algorithms

    Get PDF
    With the recent trends towards massive data sets and significant computational power, combined with evolutionary algorithmic advances evolutionary computation is becoming much more relevant to practice. Aim of the book is to present recent improvements, innovative ideas and concepts in a part of a huge EA field

    Memetic micro-genetic algorithms for cancer data classification

    Get PDF
    Fast and precise medical diagnosis of human cancer is crucial for treatment decisions. Gene selection consists of identifying a set of informative genes from microarray data to allow high predictive accuracy in human cancer classification. This task is a combinatorial search problem, and optimisation methods can be applied for its resolution. In this paper, two memetic micro-genetic algorithms (MμV1 and MμV2) with different hybridisation approaches are proposed for feature selection of cancer microarray data. Seven gene expression datasets are used for experimentation. The comparison with stochastic state-of-the-art optimisation techniques concludes that problem-dependent local search methods combined with micro-genetic algorithms improve feature selection of cancer microarray data.Fil: Rojas, Matias Gabriel. Universidad Nacional de Lujan. Centro de Investigacion Docencia y Extension En Tecnologias de la Informacion y Las Comunicaciones.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Olivera, Ana Carolina. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina. Universidad Nacional de Lujan. Centro de Investigacion Docencia y Extension En Tecnologias de la Informacion y Las Comunicaciones.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Carballido, Jessica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Vidal, Pablo Javier. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentin

    VLSI Design

    Get PDF
    This book provides some recent advances in design nanometer VLSI chips. The selected topics try to present some open problems and challenges with important topics ranging from design tools, new post-silicon devices, GPU-based parallel computing, emerging 3D integration, and antenna design. The book consists of two parts, with chapters such as: VLSI design for multi-sensor smart systems on a chip, Three-dimensional integrated circuits design for thousand-core processors, Parallel symbolic analysis of large analog circuits on GPU platforms, Algorithms for CAD tools VLSI design, A multilevel memetic algorithm for large SAT-encoded problems, etc

    Problem Decomposition and Adaptation in Cooperative Neuro-Evolution

    No full text
    One way to train neural networks is to use evolutionary algorithms such as cooperative coevolution - a method that decomposes the network's learnable parameters into subsets, called subcomponents. Cooperative coevolution gains advantage over other methods by evolving particular subcomponents independently from the rest of the network. Its success depends strongly on how the problem decomposition is carried out. This thesis suggests new forms of problem decomposition, based on a novel and intuitive choice of modularity, and examines in detail at what stage and to what extent the different decomposition methods should be used. The new methods are evaluated by training feedforward networks to solve pattern classification tasks, and by training recurrent networks to solve grammatical inference problems. Efficient problem decomposition methods group interacting variables into the same subcomponents. We examine the methods from the literature and provide an analysis of the nature of the neural network optimization problem in terms of interacting variables. We then present a novel problem decomposition method that groups interacting variables and that can be generalized to neural networks with more than a single hidden layer. We then incorporate local search into cooperative neuro-evolution. We present a memetic cooperative coevolution method that takes into account the cost of employing local search across several sub-populations. The optimisation process changes during evolution in terms of diversity and interacting variables. To address this, we examine the adaptation of the problem decomposition method during the evolutionary process. The results in this thesis show that the proposed methods improve performance in terms of optimization time, scalability and robustness. As a further test, we apply the problem decomposition and adaptive cooperative coevolution methods for training recurrent neural networks on chaotic time series problems. The proposed methods show better performance in terms of accuracy and robustness
    corecore