705 research outputs found

    An Adaptive Iterated Local Search for the Mixed Capacitated General Routing Problem

    Get PDF
    We study the mixed capacitated general routing problem (MCGRP) in which a fleet of capacitated vehicles has to serve a set of requests by traversing a mixed weighted graph. The requests may be located on nodes, edges, and arcs. The problem has theoretical interest because it is a generalization of the capacitated vehicle routing problem (CVRP), the capacitated arc routing problem (CARP), and the general routing problem. It is also of great practical interest since it is often a more accurate model for real-world cases than its widely studied specializations, particularly for so-called street routing applications. Examples are urban waste collection, snow removal, and newspaper delivery. We propose a new iterated local search metaheuristic for the problem that also includes vital mechanisms from adaptive large neighborhood search combined with further intensification through local search. The method utilizes selected, tailored, and novel local search and large neighborhood search operators, as well as a new local search strategy. Computational experiments show that the proposed metaheuristic is highly effective on five published benchmarks for the MCGRP. The metaheuristic yields excellent results also on seven standard CARP data sets, and good results on four well-known CVRP benchmarks, including improvement of the best known upper bound for one instance

    On the use of biased-randomized algorithms for solving non-smooth optimization problems

    Get PDF
    Soft constraints are quite common in real-life applications. For example, in freight transportation, the fleet size can be enlarged by outsourcing part of the distribution service and some deliveries to customers can be postponed as well; in inventory management, it is possible to consider stock-outs generated by unexpected demands; and in manufacturing processes and project management, it is frequent that some deadlines cannot be met due to delays in critical steps of the supply chain. However, capacity-, size-, and time-related limitations are included in many optimization problems as hard constraints, while it would be usually more realistic to consider them as soft ones, i.e., they can be violated to some extent by incurring a penalty cost. Most of the times, this penalty cost will be nonlinear and even noncontinuous, which might transform the objective function into a non-smooth one. Despite its many practical applications, non-smooth optimization problems are quite challenging, especially when the underlying optimization problem is NP-hard in nature. In this paper, we propose the use of biased-randomized algorithms as an effective methodology to cope with NP-hard and non-smooth optimization problems in many practical applications. Biased-randomized algorithms extend constructive heuristics by introducing a nonuniform randomization pattern into them. Hence, they can be used to explore promising areas of the solution space without the limitations of gradient-based approaches, which assume the existence of smooth objective functions. Moreover, biased-randomized algorithms can be easily parallelized, thus employing short computing times while exploring a large number of promising regions. This paper discusses these concepts in detail, reviews existing work in different application areas, and highlights current trends and open research lines

    A fast heuristic for routing in post-disaster humanitarian relief logistics

    Get PDF
    In the last decades, natural disasters have been affecting the human life of millions of people. The impressive scale of these disasters has pointed out the need for an effective management of the relief supply operations. One of the crucial issues in this context is the routing of vehicles carrying critical supplies and help to disaster victims. This problem poses unique logistics challenges, including damaged transportation infrastructure and limited knowledge on the road travel times. In such circumstances, selecting more reliable paths could help the rescue team to provide fast services to those in needs. The classic cost-minimizing routing problems do not properly reflect the relevant issue of the arrival time, which clearly has a serious impact on the survival rate of the affected community. In this paper, we focus specifically on the arrival time objective function in a multi-vehicle routing problem where stochastic travel times are taken into account. The considered problem should be solved promptly in the aftermath of a disaster, hence we propose a fast heuristic that could be applied to solve the problem

    a fast heuristic for routing in post disaster humanitarian relief logistics

    Get PDF
    Abstract In the last decades, natural disasters have been affecting the human life of millions of people. The impressive scale of these disasters has pointed out the need for an effective management of the relief supply operations. One of the crucial issues in this context is the routing of vehicles carrying critical supplies and help to disaster victims. This problem poses unique logistics challenges, including damaged transportation infrastructure and limited knowledge on the road travel times. In such circumstances, selecting more reliable paths could help the rescue team to provide fast services to those in needs. The classic cost-minimizing routing problems do not properly reflect the relevant issue of the arrival time, which clearly has a serious impact on the survival rate of the affected community. In this paper, we focus specifically on the arrival time objective function in a multi-vehicle routing problem where stochastic travel times are taken into account. The considered problem should be solved promptly in the aftermath of a disaster, hence we propose a fast heuristic that could be applied to solve the problem

    An updated annotated bibliography on arc routing problems

    Get PDF
    The number of arc routing publications has increased significantly in the last decade. Such an increase justifies a second annotated bibliography, a sequel to Corberán and Prins (Networks 56 (2010), 50–69), discussing arc routing studies from 2010 onwards. These studies are grouped into three main sections: single vehicle problems, multiple vehicle problems and applications. Each main section catalogs problems according to their specifics. Section 2 is therefore composed of four subsections, namely: the Chinese Postman Problem, the Rural Postman Problem, the General Routing Problem (GRP) and Arc Routing Problems (ARPs) with profits. Section 3, devoted to the multiple vehicle case, begins with three subsections on the Capacitated Arc Routing Problem (CARP) and then delves into several variants of multiple ARPs, ending with GRPs and problems with profits. Section 4 is devoted to applications, including distribution and collection routes, outdoor activities, post-disaster operations, road cleaning and marking. As new applications emerge and existing applications continue to be used and adapted, the future of arc routing research looks promising.info:eu-repo/semantics/publishedVersio

    The stochastic vehicle routing problem : a literature review, part II : solution methods

    Get PDF
    Building on the work of Gendreau et al. (Oper Res 44(3):469–477, 1996), and complementing the first part of this survey, we review the solution methods used for the past 20 years in the scientific literature on stochastic vehicle routing problems (SVRP). We describe the methods and indicate how they are used when dealing with stochastic vehicle routing problems. Keywords: vehicle routing (VRP), stochastic programmingm, SVRPpublishedVersio

    Vehicle routing and location routing with intermediate stops:A review

    Get PDF
    • 

    corecore