643 research outputs found

    A recursively feasible and convergent Sequential Convex Programming procedure to solve non-convex problems with linear equality constraints

    Get PDF
    A computationally efficient method to solve non-convex programming problems with linear equality constraints is presented. The proposed method is based on a recursively feasible and descending sequential convex programming procedure proven to converge to a locally optimal solution. Assuming that the first convex problem in the sequence is feasible, these properties are obtained by convexifying the non-convex cost and inequality constraints with inner-convex approximations. Additionally, a computationally efficient method is introduced to obtain inner-convex approximations based on Taylor series expansions. These Taylor-based inner-convex approximations provide the overall algorithm with a quadratic rate of convergence. The proposed method is capable of solving problems of practical interest in real-time. This is illustrated with a numerical simulation of an aerial vehicle trajectory optimization problem on commercial-of-the-shelf embedded computers

    Momentum-inspired Low-Rank Coordinate Descent for Diagonally Constrained SDPs

    Full text link
    We present a novel, practical, and provable approach for solving diagonally constrained semi-definite programming (SDP) problems at scale using accelerated non-convex programming. Our algorithm non-trivially combines acceleration motions from convex optimization with coordinate power iteration and matrix factorization techniques. The algorithm is extremely simple to implement, and adds only a single extra hyperparameter -- momentum. We prove that our method admits local linear convergence in the neighborhood of the optimum and always converges to a first-order critical point. Experimentally, we showcase the merits of our method on three major application domains: MaxCut, MaxSAT, and MIMO signal detection. In all cases, our methodology provides significant speedups over non-convex and convex SDP solvers -- 5X faster than state-of-the-art non-convex solvers, and 9 to 10^3 X faster than convex SDP solvers -- with comparable or improved solution quality.Comment: 10 pages, 8 figures, preprint under revie

    Optimization and Applications

    Get PDF
    Proceedings of a workshop devoted to optimization problems, their theory and resolution, and above all applications of them. The topics covered existence and stability of solutions; design, analysis, development and implementation of algorithms; applications in mechanics, telecommunications, medicine, operations research

    Primal-dual interior-point algorithms for linear programs with many inequality constraints

    Get PDF
    Linear programs (LPs) are one of the most basic and important classes of constrained optimization problems, involving the optimization of linear objective functions over sets defined by linear equality and inequality constraints. LPs have applications to a broad range of problems in engineering and operations research, and often arise as subproblems for algorithms that solve more complex optimization problems. ``Unbalanced'' inequality-constrained LPs with many more inequality constraints than variables are an important subclass of LPs. Under a basic non-degeneracy assumption, only a small number of the constraints can be active at the solution--it is only this active set that is critical to the problem description. On the other hand, the additional constraints make the problem harder to solve. While modern ``interior-point'' algorithms have become recognized as some of the best methods for solving large-scale LPs, they may not be recommended for unbalanced problems, because their per-iteration work does not scale well with the number of constraints. In this dissertation, we investigate "constraint-reduced'' interior-point algorithms designed to efficiently solve unbalanced LPs. At each iteration, these methods construct search directions based only on a small working set of constraints, while ignoring the rest. In this way, they significantly reduce their per-iteration work and, hopefully, their overall running time. In particular, we focus on constraint-reduction methods for the highly efficient primal-dual interior-point (PDIP) algorithms. We propose and analyze a convergent constraint-reduced variant of Mehrotra's predictor-corrector PDIP algorithm, the algorithm implemented in virtually every interior-point software package for linear (and convex-conic) programming. We prove global and local quadratic convergence of this algorithm under a very general class of constraint selection rules and under minimal assumptions. We also propose and analyze two regularized constraint-reduced PDIP algorithms (with similar convergence properties) designed to deal directly with a type of degeneracy that constraint-reduced interior-point algorithms are often subject to. Prior schemes for dealing with this degeneracy could end up negating the benefit of constraint-reduction. Finally, we investigate the performance of our algorithms by applying them to several test and application problems, and show that our algorithms often outperform alternative approaches
    corecore