10,078 research outputs found

    Enhanced monopulse radar tracking using empirical mode decomposition

    Get PDF
    Monopulse radar processors are used to track targets that appear in the look direction beamwidth. The target tracking information (range, azimuth angle, and elevation angle) are affected when manmade high power interference (jamming) is introduced to the radar processor through the radar antenna main lobe (main lobe interference) or antenna side lobe (side lobe interference). This interference changes the values of the error voltage which is responsible for directing the radar antenna towards the target. A monopulse radar structure that uses filtering in the empirical mode decomposition (EMD) domain is presented in this paper. EMD is carried out for the complex radar chirp signal with subsequent denoising and thresholding processes used to decrease the noise level in the radar processed data. The performance enhancement of the monopulse radar tracking system with EMD based filtering is included using the standard deviation angle estimation error (STDAE)

    Enhanced monopulse radar tracking using fractional Fourier filtering in the presence of interference

    Get PDF
    Monopulse radars are used to track a target that appears in the look direction beam width. Significant distortion is produced when manmade high power interference (jamming) is introduced to the radar processor through the radar antenna main lobe (main lobe interference) or antenna side lobe (side lobe interference). This leads to errors in the target tracking angles that may cause target mistracking. A new monopulse radar structure is presented in this paper which addresses this problem. This structure is based on the use of optimal Fractional Fourier Transform (FrFT) filtering. The improved performance of the new monopulse radar structure over the traditional monopulse processor is assessed using standard deviation angle estimation error (STDAE) for a range of simulated environments. The proposed system configurations with the optimum FrFT filters is shown to reduce the interfered signal and to minimize the STDAE for monopulse processors

    Enhanced monopulse radar tracking using optimum fractional Fourier transform

    Get PDF
    Conventional monopulse radar processors are used to track a target that appears in the look direction beam width. The distortion produced when additional targets appear in the look direction beam width can cause severe erroneous outcomes from the monopulse processor. This leads to errors in the target tracking angles that may cause target mistracking. A new signal processing algorithm is presented in this paper which offers a solution to this problem. The technique is based on the use of optimal Fractional Fourier Transform (FrFT) filtering. The relative performance of the new filtering method over traditional based methods is assessed using standard deviation angle estimation error (STDAE) for a range of simulated environments. The proposed system configuration succeeds in significantly cancelling additional target signals appearing in the look direction beam width even if these targets have the same Doppler frequency

    A new fractional Fourier transform based monopulse tracking radar processor

    Get PDF
    Conventional monopulse radar processors are used to track a target that appears in the look direction beam width. The distortion produced when additional targets appear in the look direction beam width can cause severe erroneous outcomes from the monopulse processor. This leads to errors in the target tracking angles that may cause the target tracker to fail. A new signal processing algorithm is presented in this paper that is based on the use of optimal Fractional Fourier Transform (FrFT) filtering to solve this problem. The relative performance of the new filtering method over traditional based methods is assessed using standard deviation angle estimation error (STDAE) for a range of simulated environments. The proposed system configurations with the optimum FrFT filters succeeds in effectively cancelling additional target signals appearing in the look direction beam width

    Fractional fourier transform based monopulse radar for combating jamming interference

    Get PDF
    Monopulse radars are used to track a target that appears in the look direction beam width. The distortion produced when manmade high power interference (jamming). Jamming scenarios are achieved by introducing high power interference to the radar processor through the radar antenna main lobe (main lobe interference) or antenna side lobe (side lobe interference). This leads to errors in the target tracking angles that may cause target mistracking. A new monopulse radar structure is presented in this paper which offers a solution to this problem. This structure is based on the use of optimal Fractional Fourier Transform (FrFT) filtering. The proposed system configurations with the optimum FrFT filters is shown to reduce the simulated interfered signal and improve the signal to noise ratio (SNR) in the processors outputs in both processor using the proposed monopulse structure
    • …
    corecore