2,166 research outputs found

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    Publishing LO(D)D: Linked Open (Dynamic) Data for Smart Sensing and Measuring Environments

    Get PDF
    The paper proposes a distributed framework that provides a systematic way to publish environment data which is being updated continuously; such updates might be issued at specific time intervals or bound to some environment- specific event. The framework targets smart environments having networks of devices and sensors which are interacting with each other and with their respective environments to gather and generate data and willing to publish this data. This paper addresses the issues of supporting the data publishers to maintain up-to-date and machine understandable representations, separation of views (static or dynamic data) and delivering up-to-date information to data consumers in real time, helping data consumers to keep track of changes triggered from diverse environments and keeping track of evolution of the smart environment. The paper also describes a prototype implementation of the proposed architecture. A preliminary use case implementation over a real energy metering infrastructure is also provided in the paper to prove the feasibility of the architectur

    Expressive Stream Reasoning with Laser

    Full text link
    An increasing number of use cases require a timely extraction of non-trivial knowledge from semantically annotated data streams, especially on the Web and for the Internet of Things (IoT). Often, this extraction requires expressive reasoning, which is challenging to compute on large streams. We propose Laser, a new reasoner that supports a pragmatic, non-trivial fragment of the logic LARS which extends Answer Set Programming (ASP) for streams. At its core, Laser implements a novel evaluation procedure which annotates formulae to avoid the re-computation of duplicates at multiple time points. This procedure, combined with a judicious implementation of the LARS operators, is responsible for significantly better runtimes than the ones of other state-of-the-art systems like C-SPARQL and CQELS, or an implementation of LARS which runs on the ASP solver Clingo. This enables the application of expressive logic-based reasoning to large streams and opens the door to a wider range of stream reasoning use cases.Comment: 19 pages, 5 figures. Extended version of accepted paper at ISWC 201

    Towards Analytics Aware Ontology Based Access to Static and Streaming Data (Extended Version)

    Full text link
    Real-time analytics that requires integration and aggregation of heterogeneous and distributed streaming and static data is a typical task in many industrial scenarios such as diagnostics of turbines in Siemens. OBDA approach has a great potential to facilitate such tasks; however, it has a number of limitations in dealing with analytics that restrict its use in important industrial applications. Based on our experience with Siemens, we argue that in order to overcome those limitations OBDA should be extended and become analytics, source, and cost aware. In this work we propose such an extension. In particular, we propose an ontology, mapping, and query language for OBDA, where aggregate and other analytical functions are first class citizens. Moreover, we develop query optimisation techniques that allow to efficiently process analytical tasks over static and streaming data. We implement our approach in a system and evaluate our system with Siemens turbine data

    Towards efficient processing of RDF Data Streams

    Get PDF
    In the last years, there has been an increase in the amount of real-time data generated. Sensors attached to things are transforming how we interact with our environment. Extracting meaningful information from these streams of data is essential for some application areas and requires processing systems that scale to varying conditions in data sources, complex queries, and system failures. This paper describes ongoing research on the development of a scalable RDF streaming engine

    Increasing information feed in the process of structural steel design

    Get PDF
    Research initiatives throughout history have shown how a designer typically makes associations and references to a vast amount of knowledge based on experiences to make decisions. With the increasing usage of information systems in our everyday lives, one might imagine an information system that provides designers access to the ‘architectural memories’ of other architectural designers during the design process, in addition to their own physical architectural memory. In this paper, we discuss how the increased adoption of semantic web technologies might advance this idea. We investigate to what extent information can be described with these technologies in the context of structural steel design. This investigation indicates significant possibilities regarding information reuse in the process of structural steel design and, by extent, in other design contexts as well. However, important obstacles and question remarks can still be outlined as well

    Semantic Programming for Device-Edge-Cloud Continuum

    Full text link
    This position paper presents ThothSP, a Semantic Programming framework with the aim of lowering the coding effort in building smart applications on the Device-Edge-Cloud continuum by leveraging semantic knowledge. It introduces a novel neural-symbolic stream fusion mechanism, which enables the specification of data fusion pipelines via declarative rules, with degrees of learnable probabilistic weights. Moreover, it includes an adaptive federator that allows the Thoth>runtime to be distributed across multiple compute nodes in a network, and to coordinate their resources to collaboratively process tasks by delegating partial workloads to their peers. To demonstrate ThothSP's capability, we report a case study on a distributed camera network to show ThothSP's behaviour against a traditional edge-cloud setup.Comment: arXiv admin note: text overlap with arXiv:2202.1395

    Learning from Ontology Streams with Semantic Concept Drift

    Get PDF
    Data stream learning has been largely studied for extracting knowledge structures from continuous and rapid data records. In the semantic Web, data is interpreted in ontologies and its ordered sequence is represented as an ontology stream. Our work exploits the semantics of such streams to tackle the problem of concept drift i.e., unexpected changes in data distribution, causing most of models to be less accurate as time passes. To this end we revisited (i) semantic inference in the context of supervised stream learning, and (ii) models with semantic embeddings. The experiments show accurate prediction with data from Dublin and Beijing
    corecore