40,201 research outputs found

    Ab-initio Quantum Enhanced Optical Phase Estimation Using Real-time Feedback Control

    Full text link
    Optical phase estimation is a vital measurement primitive that is used to perform accurate measurements of various physical quantities like length, velocity and displacements. The precision of such measurements can be largely enhanced by the use of entangled or squeezed states of light as demonstrated in a variety of different optical systems. Most of these accounts however deal with the measurement of a very small shift of an already known phase, which is in stark contrast to ab-initio phase estimation where the initial phase is unknown. Here we report on the realization of a quantum enhanced and fully deterministic phase estimation protocol based on real-time feedback control. Using robust squeezed states of light combined with a real-time Bayesian estimation feedback algorithm, we demonstrate deterministic phase estimation with a precision beyond the quantum shot noise limit. The demonstrated protocol opens up new opportunities for quantum microscopy, quantum metrology and quantum information processing.Comment: 5 figure

    Adaptive phase estimation is more accurate than non-adaptive phase estimation for continuous beams of light

    Get PDF
    We consider the task of estimating the randomly fluctuating phase of a continuous-wave beam of light. Using the theory of quantum parameter estimation, we show that this can be done more accurately when feedback is used (adaptive phase estimation) than by any scheme not involving feedback (non-adaptive phase estimation) in which the beam is measured as it arrives at the detector. Such schemes not involving feedback include all those based on heterodyne detection or instantaneous canonical phase measurements. We also demonstrate that the superior accuracy adaptive phase estimation is present in a regime conducive to observing it experimentally.Comment: 15 pages, 9 figures, submitted to PR

    Adaptive Bayesian decision feedback equalizer for dispersive mobile radio channels

    No full text
    The paper investigates adaptive equalization of time dispersive mobile ratio fading channels and develops a robust high performance Bayesian decision feedback equalizer (DFE). The characteristics and implementation aspects of this Bayesian DFE are analyzed, and its performance is compared with those of the conventional symbol or fractional spaced DFE and the maximum likelihood sequence estimator (MLSE). In terms of computational complexity, the adaptive Bayesian DFE is slightly more complex than the conventional DFE but is much simpler than the adaptive MLSE. In terms of error rate in symbol detection, the adaptive Bayesian DFE outperforms the conventional DFE dramatically. Moreover, for severely fading multipath channels, the adaptive MLSE exhibits significant degradation from the theoretical optimal performance and becomes inferior to the adaptive Bayesian DFE

    Blind multiuser detection using hidden markov models theory

    Get PDF
    We present an adaptive algorithm based on the theory of hidden Markov models (HMM) which is capable of jointly detecting the users in a DS-CDMA system. The proposed technique is near-far resistant and completely blind in the sense that no knowledge of the signature sequences, channel state information or training sequences is required for any user. In addition to this, an estimate of the signature of each user convolved with its physical channel impulse response (CIR), and an estimate of the background noise variance are provided once convergence is achieved (as well as estimated data sequences). At this moment, and using that CIR estimate, we can switch to any decision-directed (DD) adaptation scheme.Peer ReviewedPostprint (published version

    Quantum sensing

    Full text link
    "Quantum sensing" describes the use of a quantum system, quantum properties or quantum phenomena to perform a measurement of a physical quantity. Historical examples of quantum sensors include magnetometers based on superconducting quantum interference devices and atomic vapors, or atomic clocks. More recently, quantum sensing has become a distinct and rapidly growing branch of research within the area of quantum science and technology, with the most common platforms being spin qubits, trapped ions and flux qubits. The field is expected to provide new opportunities - especially with regard to high sensitivity and precision - in applied physics and other areas of science. In this review, we provide an introduction to the basic principles, methods and concepts of quantum sensing from the viewpoint of the interested experimentalist.Comment: 45 pages, 13 figures. Submitted to Rev. Mod. Phy
    • …
    corecore