61,811 research outputs found

    A spiral model for adding automatic, adaptive authoring to adaptive hypermedia

    Get PDF
    At present a large amount of research exists into the design and implementation of adaptive systems. However, not many target the complex task of authoring in such systems, or their evaluation. In order to tackle these problems, we have looked into the causes of the complexity. Manual annotation has proven to be a bottleneck for authoring of adaptive hypermedia. One such solution is the reuse of automatically generated metadata. In our previous work we have proposed the integration of the generic Adaptive Hypermedia authoring environment, MOT ( My Online Teacher), and a semantic desktop environment, indexed by Beagle++. A prototype, Sesame2MOT Enricher v1, was built based upon this integration approach and evaluated. After the initial evaluations, a web-based prototype was built (web-based Sesame2MOT Enricher v2 application) and integrated in MOT v2, conforming with the findings of the first set of evaluations. This new prototype underwent another evaluation. This paper thus does a synthesis of the approach in general, the initial prototype, with its first evaluations, the improved prototype and the first results from the most recent evaluation round, following the next implementation cycle of the spiral model [Boehm, 88]

    The design and implementation of an adaptive e-learning system

    Get PDF
    This paper describes the design and implementation of an adaptive e-learning system that provides a template for different learning materials as well as a student model that incorporates five distinct student characteristics as an aid to learning: primary characteristics are prior knowledge, learning style and the presence or absence of animated multimedia aids (multimedia mode); secondary characteristics include page background preference and link colour preference. The use of multimedia artefacts as a student characteristic has not previously been implemented or evaluated. The system development consists of a requirements analysis, design and implementation. The design models including use case diagrams, conceptual design, sequence diagrams, navigation design and presentation design are expressed using Unified Modelling Language (UML). The adaptive e-learning system was developed in a template implemented using Java Servlets, XHTML, XML, JavaScript and HTML. The template is a domain-independent adaptive e-learning system that has functions of both adaptivity and adaptability

    Personalised trails and learner profiling within e-learning environments

    Get PDF
    This deliverable focuses on personalisation and personalised trails. We begin by introducing and defining the concepts of personalisation and personalised trails. Personalisation requires that a user profile be stored, and so we assess currently available standard profile schemas and discuss the requirements for a profile to support personalised learning. We then review techniques for providing personalisation and some systems that implement these techniques, and discuss some of the issues around evaluating personalisation systems. We look especially at the use of learning and cognitive styles to support personalised learning, and also consider personalisation in the field of mobile learning, which has a slightly different take on the subject, and in commercially available systems, where personalisation support is found to currently be only at quite a low level. We conclude with a summary of the lessons to be learned from our review of personalisation and personalised trails

    Exploring participatory design for SNS-based AEH systems

    Get PDF
    The rapidly emerging and growing social networking sites (SNS) offer an opportunity to improve adaptive e-learning experience by introducing a social dimension, connecting users within the system. Making connections and providing communication tools can engage students in creating effective learning environment and enriching learning experiences. Researchers have been working on introducing SNS features into adaptive educational hypermedia systems. The next stage research is centered on how to enhance SNS facilities of AEH systems, in order to engage students’ participation in collaborative learning and generating and enriching learning materials. Students are the core participants in the adaptive e-learning process, so it is essential for the system designers to consider students’ opinions. This paper aims at exploring how to apply participatory design methodology in the early stage of the SNS-based AEH system design process

    Context-aware Assessment Using QR-codes

    Get PDF
    In this paper we present the implementation of a general mechanism to deliver tests based on mobile devices and matrix codes. The system is an extension of Siette, and has not been specifically developed for any subject matter. To evaluate the performance of the system and show some of its capabilities, we have developed a test for a second-year college course on Botany at the School of Forestry Engineering. Students were equipped with iPads and took an outdoor test on plant species identification. All students were able to take and complete the test in a reasonable time. Opinions expressed anonymously by the students in a survey about the usability of the system and the usefulness of the test were very favorable. We think that the application presented in this paper can broaden the applicability of automatic assessment techniques.The presentation of this work has been co-founded by the Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech

    Adaptive hypermedia for education and training

    Get PDF
    Adaptive hypermedia (AH) is an alternative to the traditional, one-size-fits-all approach in the development of hypermedia systems. AH systems build a model of the goals, preferences, and knowledge of each individual user; this model is used throughout the interaction with the user to adapt to the needs of that particular user (Brusilovsky, 1996b). For example, a student in an adaptive educational hypermedia system will be given a presentation that is adapted specifically to his or her knowledge of the subject (De Bra & Calvi, 1998; Hothi, Hall, & Sly, 2000) as well as a suggested set of the most relevant links to proceed further (Brusilovsky, Eklund, & Schwarz, 1998; Kavcic, 2004). An adaptive electronic encyclopedia will personalize the content of an article to augment the user's existing knowledge and interests (Bontcheva & Wilks, 2005; Milosavljevic, 1997). A museum guide will adapt the presentation about every visited object to the user's individual path through the museum (Oberlander et al., 1998; Stock et al., 2007). Adaptive hypermedia belongs to the class of user-adaptive systems (Schneider-Hufschmidt, KĂŒhme, & Malinowski, 1993). A distinctive feature of an adaptive system is an explicit user model that represents user knowledge, goals, and interests, as well as other features that enable the system to adapt to different users with their own specific set of goals. An adaptive system collects data for the user model from various sources that can include implicitly observing user interaction and explicitly requesting direct input from the user. The user model is applied to provide an adaptation effect, that is, tailor interaction to different users in the same context. In different kinds of adaptive systems, adaptation effects could vary greatly. In AH systems, it is limited to three major adaptation technologies: adaptive content selection, adaptive navigation support, and adaptive presentation. The first of these three technologies comes from the fields of adaptive information retrieval (IR) and intelligent tutoring systems (ITS). When the user searches for information, the system adaptively selects and prioritizes the most relevant items (Brajnik, Guida, & Tasso, 1987; Brusilovsky, 1992b)

    Adaptive Educational Hypermedia based on Multiple Student Characteristics

    Get PDF
    The learning process in Adaptive Educational Hypermedia (AEH) environments is complex and may be influenced by aspects of the student, including prior knowledge, learning styles, experience and preferences. Current AEH environments, however, are limited to processing only a small number of student characteristics. This paper discusses the development of an AEH system which includes a student model that can simultaneously take into account multiple student characteristics. The student model will be developed to use stereotypes, overlays and perturbation techniques. Keywords: adaptive educational hypermedia, multiple characteristics, student model
    • 

    corecore