182 research outputs found

    Insights on critical energy efficiency approaches in internet-of-things application

    Get PDF
    Internet-of-things (IoT) is one of the proliferated technologies that result in a larger scale of connection among different computational devices. However, establishing such a connection requires a fault-tolerant routing scheme. The existing routing scheme results in communication but does not address various problems directly linked with energy consumption. Cross layer-based scheme and optimization schemes are frequently used scheme for improving the energy efficiency performance in IoT. Therefore, this paper investigates the approaches where cross-layer-based schemes are used to retain energy efficiencies among resource-constrained devices. The paper discusses the effectivity of the approaches used to optimize network performance in IoT applications. The study outcome of this paper showcase that there are various open-end issues, which is required to be addressed effectively in order to improve the performance of application associated with the IoT system

    Edge Intelligence : Empowering Intelligence to the Edge of Network

    Get PDF
    Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis proximity to where data are captured based on artificial intelligence. Edge intelligence aims at enhancing data processing and protects the privacy and security of the data and users. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this article, we present a thorough and comprehensive survey of the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, i.e., edge caching, edge training, edge inference, and edge offloading based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare, and analyze the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, and so on. This article provides a comprehensive survey of edge intelligence and its application areas. In addition, we summarize the development of the emerging research fields and the current state of the art and discuss the important open issues and possible theoretical and technical directions.Peer reviewe

    Edge Intelligence : Empowering Intelligence to the Edge of Network

    Get PDF
    Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis proximity to where data are captured based on artificial intelligence. Edge intelligence aims at enhancing data processing and protects the privacy and security of the data and users. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this article, we present a thorough and comprehensive survey of the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, i.e., edge caching, edge training, edge inference, and edge offloading based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare, and analyze the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, and so on. This article provides a comprehensive survey of edge intelligence and its application areas. In addition, we summarize the development of the emerging research fields and the current state of the art and discuss the important open issues and possible theoretical and technical directions.Peer reviewe

    Tendencias del big data y cloud computing: Bibliometría del 2010 al 2020

    Get PDF
    This study identified the most significant trends in the high impact scientific documents analyzed with respect to Big Data and Cloud Computing during the period between 2010 and 2020, whose review was carried out in the Web of Science databases (WoS) and Scopus of 111 articles. The results were various, such as, for example, B. Dong as the author with the most publications, China, the United States, and India as the countries with the most studies and the first the most collaborative among themselves; to name a few. The following.En el presente estudio se identificaron las tendencias más significativas de los documentos científicos de alto impacto analizados con respecto al Big Data y Cloud Computing durante el periodo comprendido entre los años 2010 al 2020, cuya revisión se realizó en las bases de datos Web of Science (WoS) y Scopus de 111 artículos. Los resultados fueron varios, como, por ejemplo, B. Dong como el autor con más publicaciones, China, Estados Unidos e India como los países con más estudios y estos primeros los que más colaboran entre si; por mencionar algunos

    Resource Allocation in the Cognitive Radio Network-Aided Internet of Things for the Cyber-Physical-Social System: An Efficient Jaya Algorithm

    Get PDF
    Currently, there is a growing demand for the use of communication network bandwidth for the Internet of Things (IoT) within the cyber-physical-social system (CPSS), while needing progressively more powerful technologies for using scarce spectrum resources. Then, cognitive radio networks (CRNs) as one of those important solutions mentioned above, are used to achieve IoT effectively. Generally, dynamic resource allocation plays a crucial role in the design of CRN-aided IoT systems. Aiming at this issue, orthogonal frequency division multiplexing (OFDM) has been identified as one of the successful technologies, which works with a multi-carrier parallel radio transmission strategy. In this article, through the use of swarm intelligence paradigm, a solution approach is accordingly proposed by employing an efficient Jaya algorithm, called PA-Jaya, to deal with the power allocation problem in cognitive OFDM radio networks for IoT. Because of the algorithm-specific parameter-free feature in the proposed PA-Jaya algorithm, a satisfactory computational performance could be achieved in the handling of this problem. For this optimization problem with some constraints, the simulation results show that compared with some popular algorithms, the efficiency of spectrum utilization could be further improved by using PA-Jaya algorithm with faster convergence speed, while maximizing the total transmission rate

    Pervasive AI for IoT applications: A Survey on Resource-efficient Distributed Artificial Intelligence

    Get PDF
    Artificial intelligence (AI) has witnessed a substantial breakthrough in a variety of Internet of Things (IoT) applications and services, spanning from recommendation systems and speech processing applications to robotics control and military surveillance. This is driven by the easier access to sensory data and the enormous scale of pervasive/ubiquitous devices that generate zettabytes of real-time data streams. Designing accurate models using such data streams, to revolutionize the decision-taking process, inaugurates pervasive computing as a worthy paradigm for a better quality-of-life (e.g., smart homes and self-driving cars.). The confluence of pervasive computing and artificial intelligence, namely Pervasive AI, expanded the role of ubiquitous IoT systems from mainly data collection to executing distributed computations with a promising alternative to centralized learning, presenting various challenges, including privacy and latency requirements. In this context, an intelligent resource scheduling should be envisaged among IoT devices (e.g., smartphones, smart vehicles) and infrastructure (e.g., edge nodes and base stations) to avoid communication and computation overheads and ensure maximum performance. In this paper, we conduct a comprehensive survey of the recent techniques and strategies developed to overcome these resource challenges in pervasive AI systems. Specifically, we first present an overview of the pervasive computing, its architecture, and its intersection with artificial intelligence. We then review the background, applications and performance metrics of AI, particularly Deep Learning (DL) and reinforcement learning, running in a ubiquitous system. Next, we provide a deep literature review of communication-efficient techniques, from both algorithmic and system perspectives, of distributed training and inference across the combination of IoT devices, edge devices and cloud servers. Finally, we discuss our future vision and research challenges
    corecore