980 research outputs found

    An energy-aware scheduling approach for resource-intensive jobs using smart mobile devices as resource providers

    Get PDF
    The ever-growing adoption of smart mobile devices is a worldwide phenomenon that positions smart-phones and tablets as primary devices for communication and Internet access. In addition to this, the computing capabilities of such devices, often underutilized by their owners, are in continuous improvement. Today, smart mobile devices have multi-core CPUs, several gigabytes of RAM, and ability to communicate through several wireless networking technologies. These facts caught the attention of researchers who have proposed to leverage smart mobile devices aggregated computing capabilities for running resource intensive software. However, such idea is conditioned by key features, named singularities in the context of this thesis, that characterize resource provision with smart mobile devices.These are the ability of devices to change location (user mobility), the shared or non-dedicated nature of resources provided (lack of ownership) and the limited operation time given by the finite energy source (exhaustible resources).Existing proposals materializing this idea differ in the singularities combinations they target and the way they address each singularity, which make them suitable for distinct goals and resource exploitation opportunities. The latter are represented by real life situations where resources provided by groups of smart mobile devices can be exploited, which in turn are characterized by a social context and a networking support used to link and coordinate devices. The behavior of people in a given social context configure a special availability level of resources, while the underlying networking support imposes restrictionson how information flows, computational tasks are distributed and results are collected. The latter constitutes one fundamental difference of proposals mainly because each networking support ?i.e., ad-hoc and infrastructure based? has its own application scenarios. Aside from the singularities addressed and the networking support utilized, the weakest point of most of the proposals is their practical applicability. The performance achieved heavily relies on the accuracy with which task information, including execution time and/or energy required for execution, is provided to feed the resource allocator.The expanded usage of wireless communication infrastructure in public and private buildings, e.g., shoppings, work offices, university campuses and so on, constitutes a networking support that can be naturally re-utilized for leveraging smart mobile devices computational capabilities. In this context, this thesisproposal aims to contribute with an easy-to-implement  scheduling approach for running CPU-bound applications on a cluster of smart mobile devices. The approach is aware of the finite nature of smart mobile devices energy, and it does not depend on tasks information to operate. By contrast, it allocatescomputational resources to incoming tasks using a node ranking-based strategy. The ranking weights nodes combining static and dynamic parameters, including benchmark results, battery level, number of queued tasks, among others. This node ranking-based task assignment, or first allocation phase, is complemented with a re-balancing phase using job stealing techniques. The second allocation phase is an aid to the unbalanced load provoked as consequence of the non-dedicated nature of smart mobile devices CPU usage, i.e., the effect of the owner interaction, tasks heterogeneity, and lack of up-to-dateand accurate information of remaining energy estimations. The evaluation of the scheduling approach is through an in-vitro simulation. A novel simulator which exploits energy consumption profiles of real smart mobile devices, as well as, fluctuating CPU usage built upon empirical models, derived from real users interaction data, is another major contribution. Tests that validate the simulation tool are provided and the approach is evaluated in scenarios varying the composition of nodes, tasks and nodes characteristics including different tasks arrival rates, tasks requirements and different levels of nodes resource utilization.Fil: Hirsch Jofré, Matías Eberardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentin

    Resilience-oriented control and communication framework for cyber-physical microgrids

    Get PDF
    Climate change drives the energy supply transition from traditional fossil fuel-based power generation to renewable energy resources. This transition has been widely recognised as one of the most significant developing pathways promoting the decarbonisation process toward a zero-carbon and sustainable society. Rapidly developing renewables gradually dominate energy systems and promote the current energy supply system towards decentralisation and digitisation. The manifestation of decentralisation is at massive dispatchable energy resources, while the digitisation features strong cohesion and coherence between electrical power technologies and information and communication technologies (ICT). Massive dispatchable physical devices and cyber components are interdependent and coupled tightly as a cyber-physical energy supply system, while this cyber-physical energy supply system currently faces an increase of extreme weather (e.g., earthquake, flooding) and cyber-contingencies (e.g., cyberattacks) in the frequency, intensity, and duration. Hence, one major challenge is to find an appropriate cyber-physical solution to accommodate increasing renewables while enhancing power supply resilience. The main focus of this thesis is to blend centralised and decentralised frameworks to propose a collaboratively centralised-and-decentralised resilient control framework for energy systems i.e., networked microgrids (MGs) that can operate optimally in the normal condition while can mitigate simultaneous cyber-physical contingencies in the extreme condition. To achieve this, we investigate the concept of "cyber-physical resilience" including four phases, namely prevention/upgrade, resistance, adaption/mitigation, and recovery. Throughout these stages, we tackle different cyber-physical challenges under the concept of microgrid ranging from a centralised-to-decentralised transitional control framework coping with cyber-physical out of service, a cyber-resilient distributed control methodology for networked MGs, a UAV assisted post-contingency cyber-physical service restoration, to a fast-convergent distributed dynamic state estimation algorithm for a class of interconnected systems.Open Acces

    Mobility-aware mechanisms for fog node discovery and selection

    Get PDF
    The recent development of delay-sensitive applications has led to the emergence of the fog computing paradigm. Within this paradigm, computation nodes present at the edge of the network can act as fog nodes (FNs) capable of processing users' tasks, thus resulting in latency reductions compared to the existing cloud-based execution model. In order to realize the full potential of fog computing, new research questions have arised, mainly due to the dynamic and heterogeneous fog computing context. This thesis focuses on the following questions in particular: How can a user detect the presence of a nearby FN? How should a user on the move adapt its FN discovery strategy, according to its changing context? How should an FN be selected , in the case of user mobility and FN mobility? These questions will be addressed throughout the different contributions of this thesis. The first contribution consists in proposing a discovery solution allowing a user to become aware of the existence of a nearby FN. Using our solution, the FN advertizes its presence using custom WiFi beacons, which will be detected by the user via a scan process. An implementation of this approach has been developed and its evaluation results have shown that it results in a non-negligible energy consumption given its use of WiFi. This has led to our second contribution, which aims at improving the WiFi scan performed in our discovery approach, especially in the case of user mobility. At a first stage, this improvement consisted in embedding information about the topology of the FNs in the beacons the user receives from previous FNs. We have shown that by adapting the scan behavior based on this information, considerable energy savings can be achieved, while guaranteeing a high discovery rate. However, as this approach is associated with a restrictive FN topology structure, we proposed a different alternative, at a second stage. This alternative leverages the history of cellular context information as an indicator allowing the user to infer whether an FN may be present in its current location. If so, the scan will be enabled. Otherwise, it is disabled. The simulation results comparing different classification algorithms have shown that a sequence-based model, such as a hidden-Markov model is able to effectively predict the FN presence in the current user location. While the previous approaches have focused on a sparse FN deployment, our third contribution considers a high density of FNs. Consequently, as there are multiple nearby FNs that can process the user's tasks, it is important to derive a suitable FN selection strategy. This strategy should consider the time-varying set of FNs caused by the user's mobility. Besides, it should minimize the number of switches from one FN to another, in order to maintain a good quality of service. With these considerations in mind, we have shown that an adaptive greedy approach, that selects an FN having a good-enough delay estimate, achieves the best results. Finally, unlike the previous contribution, where the focus has been on FN selection when the user is mobile, our final contribution deals with mobile vehicular FNs (VFNs). Given the mobility of such VFNs, it is important to make the most of their resources, since they are only available for a short time at a given area. So, we propose that, in order to select an appropriate VFN for a given task, a reference roadside unit (RSU) responsible for task assignment can use advice from a neighbor RSU. This advice consists in the VFN that will result in the lowest delay for the current task, based on the experience of the neighbor RSU. The results have shown that, using the provided advice, the reference RSU can observe significant delay reductions. All in all, the proposed contributions have addressed various problems that may arise in a fog computing context and the obtained results can be used to guide the development of the building blocks of future fog computing solutions.El recent desenvolupament d'aplicacions IoT ha comportat l'aparició del paradigma de fog computing. Dins d'aquest paradigma, els nodes de càlcul presents a la vora de la xarxa poden actuar com a “fog nodes'' (FN) capaços de processar les tasques dels usuaris, produint així reduccions de latència en comparació amb el model d'execució basat en núvol. Per assolir tot el potencial del fog computing, han sorgit noves qüestions de recerca, principalment a causa del context dinàmic i heterogeni de fog computing. Aquesta tesi se centra especialment en les qüestions següents: Com pot un usuari detectar la presència d'un FN? Com hauria d’adaptar un usuari en moviment la seva estratègia de descobriment de FN, segons el seu context? Com s’ha de seleccionar un FN, en el cas de la mobilitat dels usuaris i la mobilitat FN? Aquestes preguntes s’abordaran al llarg de les diferents aportacions d’aquesta tesi. La primera contribució consisteix a proposar una solució de descobriment que permeti a l'usuari detectar l’existència d’un FN proper. Mitjançant la nostra solució, un FN anuncia la seva presència mitjançant beacons Wi-Fi personalitzats, que seran detectats per l'usuari mitjançant un procés d’exploració. S'ha desenvolupat una implementació d'aquest enfocament i els seus resultats d’avaluació han demostrat que resulta en un consum d'energia menyspreable donat el seu ús del Wi-Fi. Això ha suposat la nostra segona contribució, que té com a objectiu millorar l’exploració Wi-Fi, especialment en el cas de la mobilitat dels usuaris. En una primera fase, aquesta millora va consistir a incorporar informació sobre la topologia dels FN en les beacons que rep l'usuari dels FN anteriors. Hem demostrat que mitjançant l'adaptació del comportament d'escaneig basat en aquesta informació es pot aconseguir un estalvi considerable d’energia, alhora que es garanteix un índex elevat de descobriment. Tanmateix, com aquest enfocament s'associa a una estructura de topologia FN restrictiva, vam proposar una alternativa diferent, en una segona etapa. Aquesta alternativa aprofita la història de la informació del context cel·lular com a indicador que permet a l'usuari deduir si un FN pot estar present en la seva ubicació. En cas afirmatiu, l'exploració estarà habilitada. Els resultats de la simulació comparant diferents algoritmes de classificació han demostrat que un model basat en seqüències, com un model HMM, és capaç de predir eficaçment la presència de FNs a la ubicació actual de l'usuari. Si bé els enfocaments anteriors s’han centrat en un desplegament escàs de FNs, la nostra tercera contribució considera una alta densitat d'FNs. En conseqüència, com que hi ha múltiples FNs propers que poden processar les tasques de l'usuari, és important derivar una estratègia de selecció de FN adequada. Aquesta estratègia hauria de tenir en compte el conjunt variable de temps causat per la mobilitat de l'usuari. A més, hauria de minimitzar el nombre de canvis d'un FN a un altre, per mantenir una bona qualitat del servei. Tenint en compte aquestes consideracions, hem demostrat que un enfocament codiciós adaptatiu, que selecciona un FN amb una estimació de retard suficient, aconsegueix els millors resultats. Finalment, a diferència de l'aportació anterior, on l'atenció s'ha fixat en la selecció d'FN quan l'usuari és mòbil, la nostra contribució final tracta sobre les FNs per a vehicles mòbils (VFNs). Tenint en compte la mobilitat d’aquests VFNs, és important aprofitar al màxim els seus recursos, ja que només estan disponibles per a un temps curt. Així doncs, proposem que, per seleccionar un VFN adequat per a una tasca, una unitat RSU responsable de l'assignació de tasques pot utilitzar consells d'un RSU veí. Aquest consell consisteix en escollir el VFN que suposarà el menor retard de la tasca actual, en funció de l’experiència del RSU veí. Els resultats han demostrat que ..

    The role of communication systems in smart grids: Architectures, technical solutions and research challenges

    Get PDF
    The purpose of this survey is to present a critical overview of smart grid concepts, with a special focus on the role that communication, networking and middleware technologies will have in the transformation of existing electric power systems into smart grids. First of all we elaborate on the key technological, economical and societal drivers for the development of smart grids. By adopting a data-centric perspective we present a conceptual model of communication systems for smart grids, and we identify functional components, technologies, network topologies and communication services that are needed to support smart grid communications. Then, we introduce the fundamental research challenges in this field including communication reliability and timeliness, QoS support, data management services, and autonomic behaviors. Finally, we discuss the main solutions proposed in the literature for each of them, and we identify possible future research directions

    Smart Decision-Making via Edge Intelligence for Smart Cities

    Get PDF
    Smart cities are an ambitious vision for future urban environments. The ultimate aim of smart cities is to use modern technology to optimize city resources and operations while improving overall quality-of-life of its citizens. Realizing this ambitious vision will require embracing advancements in information communication technology, data analysis, and other technologies. Because smart cities naturally produce vast amounts of data, recent artificial intelligence (AI) techniques are of interest due to their ability to transform raw data into insightful knowledge to inform decisions (e.g., using live road traffic data to control traffic lights based on current traffic conditions). However, training and providing these AI applications is non-trivial and will require sufficient computing resources. Traditionally, cloud computing infrastructure have been used to process computationally intensive tasks; however, due to the time-sensitivity of many of these smart city applications, novel computing hardware/technologies are required. The recent advent of edge computing provides a promising computing infrastructure to support the needs of the smart cities of tomorrow. Edge computing pushes compute resources close to end users to provide reduced latency and improved scalability — making it a viable candidate to support smart cities. However, it comes with hardware limitations that are necessary to consider. This thesis explores the use of the edge computing paradigm for smart city applications and how to make efficient, smart decisions related to their available resources. This is done while considering the quality-of-service provided to end users. This work can be seen as four parts. First, this work touches on how to optimally place and serve AI-based applications on edge computing infrastructure to maximize quality-of-service to end users. This is cast as an optimization problem and solved with efficient algorithms that approximate the optimal solution. Second, this work investigates the applicability of compression techniques to reduce offloading costs for AI-based applications in edge computing systems. Finally, this thesis then demonstrate how edge computing can support AI-based solutions for smart city applications, namely, smart energy and smart traffic. These applications are approached using the recent paradigm of federated learning. The contributions of this thesis include the design of novel algorithms and system design strategies for placement and scheduling of AI-based services on edge computing systems, formal formulation for trade-offs between delivered AI model performance and latency, compression for offloading decisions for communication reductions, and evaluation of federated learning-based approaches for smart city applications
    • …
    corecore