1,139 research outputs found

    Proceedings, MSVSCC 2014

    Get PDF
    Proceedings of the 8th Annual Modeling, Simulation & Visualization Student Capstone Conference held on April 17, 2014 at VMASC in Suffolk, Virginia

    Deep Model for Improved Operator Function State Assessment

    Get PDF
    A deep learning framework is presented for engagement assessment using EEG signals. Deep learning is a recently developed machine learning technique and has been applied to many applications. In this paper, we proposed a deep learning strategy for operator function state (OFS) assessment. Fifteen pilots participated in a flight simulation from Seattle to Chicago. During the four-hour simulation, EEG signals were recorded for each pilot. We labeled 20- minute data as engaged and disengaged to fine-tune the deep network and utilized the remaining vast amount of unlabeled data to initialize the network. The trained deep network was then used to assess if a pilot was engaged during the four-hour simulation

    a blockchain based proposal for protecting healthcare systems through formal methods

    Get PDF
    Abstract Blockchain technology is one of the most important and disruptive technologies in the world. Multiple industries are adopting the blockchain technology to innovate the way they work. One of the industries that are looking to adopt the blockchain is the healthcare industry. In fact, the protection of the private information stored in hospital database is a critical issue. In this paper we propose a method aimed to protect information exchanged in hospital networks, with particular regard to magnetic resonance images. As required from blockchain technology, each host network must validate the transiting data network: we exploit formal equivalence checking to perform this validation, by modeling magnetic resonance images in terms of automata by exploiting radiomic features

    Teleoperation of passivity-based model reference robust control over the internet

    Get PDF
    This dissertation offers a survey of a known theoretical approach and novel experimental results in establishing a live communication medium through the internet to host a virtual communication environment for use in Passivity-Based Model Reference Robust Control systems with delays. The controller which is used as a carrier to support a robust communication between input-to-state stability is designed as a control strategy that passively compensates for position errors that arise during contact tasks and strives to achieve delay-independent stability for controlling of aircrafts or other mobile objects. Furthermore the controller is used for nonlinear systems, coordination of multiple agents, bilateral teleoperation, and collision avoidance thus maintaining a communication link with an upper bound of constant delay is crucial for robustness and stability of the overall system. For utilizing such framework an elucidation can be formulated by preparing site survey for analyzing not only the geographical distances separating the nodes in which the teleoperation will occur but also the communication parameters that define the virtual topography that the data will travel through. This survey will first define the feasibility of the overall operation since the teleoperation will be used to sustain a delay based controller over the internet thus obtaining a hypothetical upper bound for the delay via site survey is crucial not only for the communication system but also the delay is required for the design of the passivity-based model reference robust control. Following delay calculation and measurement via site survey, bandwidth tests for unidirectional and bidirectional communication is inspected to ensure that the speed is viable to maintain a real-time connection. Furthermore from obtaining the results it becomes crucial to measure the consistency of the delay throughout a sampled period to guarantee that the upper bound is not breached at any point within the communication to jeopardize the robustness of the controller. Following delay analysis a geographical and topological overview of the communication is also briefly examined via a trace-route to understand the underlying nodes and their contribution to the delay and round-trip consistency. To accommodate the communication channel for the controller the input and output data from both nodes need to be encapsulated within a transmission control protocol via a multithreaded design of a robust program within the C language. The program will construct a multithreaded client-server relationship in which the control data is transmitted. For added stability and higher level of security the channel is then encapsulated via an internet protocol security by utilizing a protocol suite for protecting the communication by authentication and encrypting each packet of the session using negotiation of cryptographic keys during each session

    Microwave Breast Imaging System Prototype with Integrated Numerical Characterization

    Get PDF
    The increasing number of experimental microwave breast imaging systems and the need to properly model them have motivated our development of an integrated numerical characterization technique. We use Ansoft HFSS and a formalism we developed previously to numerically characterize an S-parameter- based breast imaging system and link it to an inverse scattering algorithm. We show successful reconstructions of simple test objects using synthetic and experimental data. We demonstrate the sensitivity of image reconstructions to knowledge of the background dielectric properties and show the limits of the current model

    Proceedings, MSVSCC 2015

    Get PDF
    The Virginia Modeling, Analysis and Simulation Center (VMASC) of Old Dominion University hosted the 2015 Modeling, Simulation, & Visualization Student capstone Conference on April 16th. The Capstone Conference features students in Modeling and Simulation, undergraduates and graduate degree programs, and fields from many colleges and/or universities. Students present their research to an audience of fellow students, faculty, judges, and other distinguished guests. For the students, these presentations afford them the opportunity to impart their innovative research to members of the M&S community from academic, industry, and government backgrounds. Also participating in the conference are faculty and judges who have volunteered their time to impart direct support to their students’ research, facilitate the various conference tracks, serve as judges for each of the tracks, and provide overall assistance to this conference. 2015 marks the ninth year of the VMASC Capstone Conference for Modeling, Simulation and Visualization. This year our conference attracted a number of fine student written papers and presentations, resulting in a total of 51 research works that were presented. This year’s conference had record attendance thanks to the support from the various different departments at Old Dominion University, other local Universities, and the United States Military Academy, at West Point. We greatly appreciated all of the work and energy that has gone into this year’s conference, it truly was a highly collaborative effort that has resulted in a very successful symposium for the M&S community and all of those involved. Below you will find a brief summary of the best papers and best presentations with some simple statistics of the overall conference contribution. Followed by that is a table of contents that breaks down by conference track category with a copy of each included body of work. Thank you again for your time and your contribution as this conference is designed to continuously evolve and adapt to better suit the authors and M&S supporters. Dr.Yuzhong Shen Graduate Program Director, MSVE Capstone Conference Chair John ShullGraduate Student, MSVE Capstone Conference Student Chai

    radiomic features for medical images tamper detection by equivalence checking

    Get PDF
    Abstract Digital medical images are very easy to be modified for illegal purposes. An attacker may perform this act in order to stop a political candidate, sabotage research, commit insurance fraud, perform an act of terrorism, or even commit murder. Between the machine that performs medical scans and the radiologist monitor, medical images pass through different devices: in this chain an attacker can perform its malicious action. In this paper we propose a method aimed to avoid medical images modifications by means of equivalence checking. Magnetic images are represented as finite state automata and equivalence checking is exploited to check whether the medical resource have been subject to illegal modifications

    High-resolution observations of the solar photosphere and chromosphere

    Get PDF
    Observations of the sun are almost always impaired by the turbulent motion of air in Earth's atmosphere. The turbulence would limit the theoretical resolution of modern large telescopes to that of amateur telescopes without additional tools.Today however, high-resolution data of the Sun are necessary to invesitgate its small-scale structure. This structure is likely to be connected to the radially outward increasing temparature distribution of the solar atmosphere. An introduction into further details of this topic that has also been the motivation for this work is presented in Chapt. 1. A theory of atmospheric turbulence that builds the basis for several results of this work is described in Chapt. 2. Here, two modern tools to enhance the resolution of groundbased observations are reviewed, on the one hand adaptive optics (AO) systems and on the other hand speckle interferometry. Until recently, these two techniques were only used separately. In Chapt. 3 the necessary modifications for analytical models of transfer functions are developed that include the changes made by an AO system to the incoming wave front, thus making a combination of AO systems and speckle interferometry possible ...thesi

    Enabling technology for non-rigid registration during image-guided neurosurgery

    Get PDF
    In the context of image processing, non-rigid registration is an operation that attempts to align two or more images using spatially varying transformations. Non-rigid registration finds application in medical image processing to account for the deformations in the soft tissues of the imaged organs. During image-guided neurosurgery, non-rigid registration has the potential to assist in locating critical brain structures and improve identification of the tumor boundary. Robust non-rigid registration methods combine estimation of tissue displacement based on image intensities with the spatial regularization using biomechanical models of brain deformation. In practice, the use of such registration methods during neurosurgery is complicated by a number of issues: construction of the biomechanical model used in the registration from the image data, high computational demands of the application, and difficulties in assessing the registration results. In this dissertation we develop methods and tools that address some of these challenges, and provide components essential for the intra-operative application of a previously validated physics-based non-rigid registration method.;First, we study the problem of image-to-mesh conversion, which is required for constructing biomechanical model of the brain used during registration. We develop and analyze a number of methods suitable for solving this problem, and evaluate them using application-specific quantitative metrics. Second, we develop a high-performance implementation of the non-rigid registration algorithm and study the use of geographically distributed Grid resources for speculative registration computations. Using the high-performance implementation running on the remote computing resources we are able to deliver the results of registration within the time constraints of the neurosurgery. Finally, we present a method that estimates local alignment error between the two images of the same subject. We assess the utility of this method using multiple sources of ground truth to evaluate its potential to support speculative computations of non-rigid registration
    corecore