490 research outputs found

    Real-time performance-focused on localisation techniques for autonomous vehicle: a review

    Get PDF

    VANET-Based Traffic Monitoring and Incident Detection System: A Review

    Get PDF
    As a component of intelligent transport systems (ITS), vehicular ad hoc network (VANET), which is a subform of manet, has been identified. It is established on the roads based on available vehicles and supporting road infrastructure, such as base stations. An accident can be defined as any activity in the environment that may be harmful to human life or dangerous to human life. In terms of early detection, and broadcast delay. VANET has shown various problems. The available technologies for incident detection and the corresponding algorithms for processing. The present problem and challenges of incident detection in VANET technology are discussed in this paper. The paper also reviews the recently proposed methods for early incident techniques and studies them

    Towards video streaming in IoT environments: vehicular communication perspective

    Get PDF
    Multimedia oriented Internet of Things (IoT) enables pervasive and real-time communication of video, audio and image data among devices in an immediate surroundings. Today's vehicles have the capability of supporting real time multimedia acquisition. Vehicles with high illuminating infrared cameras and customized sensors can communicate with other on-road devices using dedicated short-range communication (DSRC) and 5G enabled communication technologies. Real time incidence of both urban and highway vehicular traffic environment can be captured and transmitted using vehicle-to-vehicle and vehicle-to-infrastructure communication modes. Video streaming in vehicular IoT (VSV-IoT) environments is in growing stage with several challenges that need to be addressed ranging from limited resources in IoT devices, intermittent connection in vehicular networks, heterogeneous devices, dynamism and scalability in video encoding, bandwidth underutilization in video delivery, and attaining application-precise quality of service in video streaming. In this context, this paper presents a comprehensive review on video streaming in IoT environments focusing on vehicular communication perspective. Specifically, significance of video streaming in vehicular IoT environments is highlighted focusing on integration of vehicular communication with 5G enabled IoT technologies, and smart city oriented application areas for VSV-IoT. A taxonomy is presented for the classification of related literature on video streaming in vehicular network environments. Following the taxonomy, critical review of literature is performed focusing on major functional model, strengths and weaknesses. Metrics for video streaming in vehicular IoT environments are derived and comparatively analyzed in terms of their usage and evaluation capabilities. Open research challenges in VSV-IoT are identified as future directions of research in the area. The survey would benefit both IoT and vehicle industry practitioners and researchers, in terms of augmenting understanding of vehicular video streaming and its IoT related trends and issues

    Motorcycle detection for ADAS through camera and V2V communication, a comparative analysis of two modern technologies

    Full text link
    Motorcycles are one of the most dangerous means of transportation. Its death toll is higher than in others, due to the inherent vulnerability of motorcycle drivers. The latest strategies in Advanced Driving Assistance Systems (ADAS) are trying to mitigate this problem by applying the advances of modern technologies to the road transport. This paper presents two different approaches on motorcycle protection, based on two of the most modern available technologies in ADAS, i.e. Computer Vision and Vehicle to Vehicle Communication (V2V). The first approach is based on data fusion of Laser Scanner and Computer Vision, providing accurate obstacle detection and localization based on laser scanner, and obstacle classification using computer vision and laser. The second approach is based on ad-hoc V2V technology and provides detection in case of occlusion for visual sensors. Both technologies have been tested in the presented work, and a performance comparison is given. Tests performed in different driving situations allows to measure the performance of every algorithm and the limitations of each of them based on empirical and scientific foundations. The conclusions of the presented work help foster of expert systems in the automotive sector by providing further discussion of the viability and impact from each of these systems in real scenarios

    Machine learning and blockchain technologies for cybersecurity in connected vehicles

    Get PDF
    Future connected and autonomous vehicles (CAVs) must be secured againstcyberattacks for their everyday functions on the road so that safety of passengersand vehicles can be ensured. This article presents a holistic review of cybersecurityattacks on sensors and threats regardingmulti-modal sensor fusion. A compre-hensive review of cyberattacks on intra-vehicle and inter-vehicle communicationsis presented afterward. Besides the analysis of conventional cybersecurity threatsand countermeasures for CAV systems,a detailed review of modern machinelearning, federated learning, and blockchain approach is also conducted to safe-guard CAVs. Machine learning and data mining-aided intrusion detection systemsand other countermeasures dealing with these challenges are elaborated at theend of the related section. In the last section, research challenges and future direc-tions are identified
    • …
    corecore