33 research outputs found

    A New Multi-Rate Clock and Data Recovery Circuit

    Get PDF
    A new bit rate adaptive clock and data recovery circuit able to operate in a range from 3.125 Mb/s to 2.5 Gb/s is presented in this work. It is designed in a standard CMOS technology, fed with a single supply voltage of 1.8 V and has a maximum power consumption of 140 mW

    Single-Laser Multi-Terabit/s Systems

    Get PDF
    Optical communication systems carry the bulk of all data traffic worldwide. This book introduces multi-Terabit/s transmission systems and three key technologies for next generation networks. A software-defined multi-format transmitter, an optical comb source and an optical processing scheme for the fast Fourier transform for Tbit/s signals. Three world records demonstrate the potential: The first single laser 10 Tbit/s and 26 Tbit/s OFDM and the first 32.5 Tbit/s Nyquist WDM experiments

    Single-Laser Multi-Terabit/s Systems

    Get PDF
    Optical communication systems carry the bulk of all data traffic worldwide. This book introduces multi-Terabit/s transmission systems and three key technologies for next generation networks. A software-defined multi-format transmitter, an optical comb source and an optical processing scheme for the fast Fourier transform for Tbit/s signals. Three world records demonstrate the potential: The first single laser 10 Tbit/s and 26 Tbit/s OFDM and the first 32.5 Tbit/s Nyquist WDM experiments

    Fiber-based orthogonal frequency division multiplexing transmission systems

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) is the underlying modulation and transmission technology behind the success of modern wireless standards for both cellular, digital television and digital radio communications and also for Digital Subscriber Line wired access. Higher data rates to handle and the special nature of electronic-optic conversions and of optical wave propagation, can hold the key as to why it is only now that OFDM signal transmission over fiber is starting to take off. In this Master Thesis Project we aim at establishing the basis of OFDM transmission over optical fiber for both direct-detection as well as coherent systems, for different optical modulation formats at the emitter; and to characterize their performance as a function of key parameters such as fiber chromatic dispersion, the amount of Cyclic Prefix, Peak to Average Power Ratio, etc. through the use of optical transmission simulation packages such as Virtual Photonics Inc

    Semiconductor Mode-Locked Lasers for Optical Communication Systems

    Get PDF

    Novel linear and nonlinear optical signal processing for ultra-high bandwidth communications

    Get PDF
    The thesis is articulated around the theme of ultra-wide bandwidth single channel signals. It focuses on the two main topics of transmission and processing of information by techniques compatible with high baudrates. The processing schemes introduced combine new linear and nonlinear optical platforms such as Fourier-domain programmable optical processors and chalcogenide chip waveguides, as well as the concept of neural network. Transmission of data is considered in the context of medium distance links of Optical Time Division Multiplexed (OTDM) data subject to environmental fluctuations. We experimentally demonstrate simultaneous compensation of differential group delay and multiple orders of dispersion at symbol rates of 640 Gbaud and 1.28 Tbaud. Signal processing at high bandwidth is envisaged both in the case of elementary post-transmission analog error mitigation and in the broader field of optical computing for high level operations (“optical processor”). A key innovation is the introduction of a novel four-wave mixing scheme implementing a dot-product operation between wavelength multiplexed channels. In particular, it is demonstrated for low-latency hash-key based all-optical error detection in links encoded with advanced modulation formats. Finally, the work presents groundbreaking concepts for compact implementation of an optical neural network as a programmable multi-purpose processor. The experimental architecture can implement neural networks with several nodes on a single optical nonlinear transfer function implementing functions such as analog-to-digital conversion. The particularity of the thesis is the new approaches to optical signal processing that potentially enable high level operations using simple optical hardware and limited cascading of components
    corecore