5,239 research outputs found

    Automated Bilateral Bargaining about Multiple Attributes in a One­ to ­Many Setting

    No full text
    Negotiations are an important way of reaching agreements between selfish autonomous agents. In this paper we focus on one-to-many bargaining within the context of agent-mediated electronic commerce. We consider an approach where a seller agent negotiates over multiple interdependent attributes with many buyer agents in a bilateral fashion. In this setting, "fairness", which corresponds to the notion of envy-freeness in auctions, may be an important business constraint. For the case of virtually unlimited supply (such as information goods), we present a number of one-to-many bargaining strategies for the seller agent, which take into account the fairness constraint, and consider multiple attributes simultaneously. We compare the performance of the bargaining strategies using an evolutionary simulation, especially for the case of impatient buyers. Several of the developed strategies are able to extract almost all the surplus; they utilize the fact that the setting is one-to-many, even though bargaining is bilateral

    Efficient Methods for Automated Multi-Issue Negotiation: Negotiating over a Two-Part Tariff

    No full text
    In this article, we consider the novel approach of a seller and customer negotiating bilaterally about a two-part tariff, using autonomous software agents. An advantage of this approach is that win-win opportunities can be generated while keeping the problem of preference elicitation as simple as possible. We develop bargaining strategies that software agents can use to conduct the actual bilateral negotiation on behalf of their owners. We present a decomposition of bargaining strategies into concession strategies and Pareto-efficient-search methods: Concession and Pareto-search strategies focus on the conceding and win-win aspect of bargaining, respectively. An important technical contribution of this article lies in the development of two Pareto-search methods. Computer experiments show, for various concession strategies, that the respective use of these two Pareto-search methods by the two negotiators results in very efficient bargaining outcomes while negotiators concede the amount specified by their concession strategy

    Multi-attribute bilateral bargaining in a one-to-many setting

    Get PDF
    Negotiations are an important way of reaching agreements between selfish autonomous agents. In this paper we focus on one-to-many bargaining within the context of agent-mediated electronic commerce. We consider an approach where a seller negotiates over multiple interdependent attributes with many buyers individually. Bargaining is conducted in a bilateral fashion, using an alternating-offers protocol. In such a one-to-many setting, “fairness,” which corresponds to the notion of envy-freeness in auctions, may be an important business constraint. For the case of virtually unlimited supply (such as information goods), we present a number of one-to-many bargaining strategies for the seller, which take into account the fairness constraint, and consider multiple attributes simultaneously. We compare the performance of the bargaining strategies using an evolutionary simulation, especially for the case of impatient buyers and small premature bargaining break off probability. Several of the developed strategies are able to extract almost all the surplus; they utilize the fact that the setting is one-to-many, even though bargaining occurs in a bilateral fashion

    An Evolutionary Learning Approach for Adaptive Negotiation Agents

    Get PDF
    Developing effective and efficient negotiation mechanisms for real-world applications such as e-Business is challenging since negotiations in such a context are characterised by combinatorially complex negotiation spaces, tough deadlines, very limited information about the opponents, and volatile negotiator preferences. Accordingly, practical negotiation systems should be empowered by effective learning mechanisms to acquire dynamic domain knowledge from the possibly changing negotiation contexts. This paper illustrates our adaptive negotiation agents which are underpinned by robust evolutionary learning mechanisms to deal with complex and dynamic negotiation contexts. Our experimental results show that GA-based adaptive negotiation agents outperform a theoretically optimal negotiation mechanism which guarantees Pareto optimal. Our research work opens the door to the development of practical negotiation systems for real-world applications

    Development of a Fuzzy-based Multi-agent System for E-commerce Settings

    Get PDF
    AbstractIn this paper we present our experience in developing a fuzzy-logic based multi-agent e-commerce system capable of achieving a mutually beneficial deal for the seller and buyer using a negotiation process. We use fuzzy logic to assist users to express their preferences about a product in fuzzy terms such as low, medium and high. Our system evaluates offers based on a fuzzy utility function and feeds utility scores to a fuzzy inference system which then computes its next counter offer. Our paper presents issues involved in the development of a multi-agent system for e-commerce settings using the JADE platform - a modern agent development environment. In this paper our focus is on implementing agents of different types/roles engaged in activities usually encountered with buying and selling in an e-commerce environment. Our concluding remarks and future research are presented

    Towards a quantitative concession-based classification method of negotiation strategies

    No full text
    In order to successfully reach an agreement in a negotiation, both parties rely on each other to make concessions. The willingness to concede also depends in large part on the opponent. A concession by the opponent may be reciprocated, but the negotiation process may also be frustrated if the opponent does not concede at all.This process of concession making is a central theme in many of the classic and current automated negotiation strategies. In this paper, we present a quantitative classification method of negotiation strategies that measures the willingness of an agent to concede against different types of opponents. The method is then applied to classify some well-known negotiating strategies, including the agents of ANAC 2010. It is shown that the technique makes it easy to identify the main characteristics of negotiation agents, and can be used to group negotiation strategies into categories with common negotiation characteristics. We also observe, among other things, that different kinds of opponents call for a different approach in making concession

    Negotiating Concurrently with Unknown Opponents in Complex, Real-Time Domains

    No full text
    We propose a novel strategy to enable autonomous agents to negotiate concurrently with multiple, unknown opponents in real-time, over complex multi-issue domains. We formalise our strategy as an optimisation problem, in which decisions are based on probabilistic information about the opponents' strategies acquired during negotiation. In doing so, we develop the first principled approach that enables the coordination of multiple, concurrent negotiation threads for practical negotiation settings. Furthermore, we validate our strategy using the agents and domains developed for the International Automated Negotiating Agents Competition (ANAC), and we benchmark our strategy against the state-of-the-art. We find that our approach significantly outperforms existing approaches, and this difference improves even further as the number of available negotiation opponents and the complexity of the negotiation domain increases

    A Deep Reinforcement Learning Approach to Concurrent Bilateral Negotiation

    Get PDF
    We present a novel negotiation model that allows an agent to learn how to negotiate during concurrent bilateral negotiations in unknown and dynamic e-markets. The agent uses an actor-critic architecture with model-free reinforcement learning to learn a strategy expressed as a deep neural network. We pre-train the strategy by supervision from synthetic market data, thereby decreasing the exploration time required for learning during negotiation. As a result, we can build automated agents for concurrent negotiations that can adapt to different e-market settings without the need to be pre-programmed. Our experimental evaluation shows that our deep reinforcement learning-based agents outperform two existing well-known negotiation strategies in one-to-many concurrent bilateral negotiations for a range of e-market settings
    corecore