458 research outputs found

    Complexity of Multi-Value Byzantine Agreement

    Full text link
    In this paper, we consider the problem of maximizing the throughput of Byzantine agreement, given that the sum capacity of all links in between nodes in the system is finite. We have proposed a highly efficient Byzantine agreement algorithm on values of length l>1 bits. This algorithm uses error detecting network codes to ensure that fault-free nodes will never disagree, and routing scheme that is adaptive to the result of error detection. Our algorithm has a bit complexity of n(n-1)l/(n-t), which leads to a linear cost (O(n)) per bit agreed upon, and overcomes the quadratic lower bound (Omega(n^2)) in the literature. Such linear per bit complexity has only been achieved in the literature by allowing a positive probability of error. Our algorithm achieves the linear per bit complexity while guaranteeing agreement is achieved correctly even in the worst case. We also conjecture that our algorithm can be used to achieve agreement throughput arbitrarily close to the agreement capacity of a network, when the sum capacity is given

    Introduction to the special section on dependable network computing

    Get PDF
    Dependable network computing is becoming a key part of our daily economic and social life. Every day, millions of users and businesses are utilizing the Internet infrastructure for real-time electronic commerce transactions, scheduling important events, and building relationships. While network traffic and the number of users are rapidly growing, the mean-time between failures (MTTF) is surprisingly short; according to recent studies, in the majority of Internet backbone paths, the MTTF is 28 days. This leads to a strong requirement for highly dependable networks, servers, and software systems. The challenge is to build interconnected systems, based on available technology, that are inexpensive, accessible, scalable, and dependable. This special section provides insights into a number of these exciting challenges
    • …
    corecore