5,447 research outputs found

    Local search heuristics for multi-index assignment problems with decomposable costs.

    Get PDF
    The multi-index assignment problem (MIAP) with decomposable costs is a natural generalization of the well-known assignment problem. Applications of the MIAP arise for instance in the field of multi-target multi-sensor tracking. We describe an (exponentially sized) neighborhood for a solution of the MIAP with decomposable costs, and show that one can find a best solution in this neighborhood in polynomial time. Based on this neighborhood, we propose a local search algorithm. We empirically test the performance of published constructive heuristics and the local search algorithm on random instances; a straightforward tabu search is also tested. Finally, we compute lower bounds to our problem, which enable us to assess the quality of the solutions found.Assignment; Costs; Heuristics; Problems; Applications; Performance;

    Analysis of a parallelized nonlinear elliptic boundary value problem solver with application to reacting flows

    Get PDF
    A parallelized finite difference code based on the Newton method for systems of nonlinear elliptic boundary value problems in two dimensions is analyzed in terms of computational complexity and parallel efficiency. An approximate cost function depending on 15 dimensionless parameters is derived for algorithms based on stripwise and boxwise decompositions of the domain and a one-to-one assignment of the strip or box subdomains to processors. The sensitivity of the cost functions to the parameters is explored in regions of parameter space corresponding to model small-order systems with inexpensive function evaluations and also a coupled system of nineteen equations with very expensive function evaluations. The algorithm was implemented on the Intel Hypercube, and some experimental results for the model problems with stripwise decompositions are presented and compared with the theory. In the context of computational combustion problems, multiprocessors of either message-passing or shared-memory type may be employed with stripwise decompositions to realize speedup of O(n), where n is mesh resolution in one direction, for reasonable n

    A New Approach to Population Sizing for Memetic Algorithms: A Case Study for the Multidimensional Assignment Problem

    Get PDF
    Memetic algorithms are known to be a powerful technique in solving hard optimization problems. To design a memetic algorithm, one needs to make a host of decisions. Selecting the population size is one of the most important among them. Most of the algorithms in the literature fix the population size to a certain constant value. This reduces the algorithm's quality since the optimal population size varies for different instances, local search procedures, and runtimes. In this paper we propose an adjustable population size. It is calculated as a function of the runtime of the whole algorithm and the average runtime of the local search for the given instance. Note that in many applications the runtime of a heuristic should be limited and, therefore, we use this bound as a parameter of the algorithm. The average runtime of the local search procedure is measured during the algorithm's run. Some coefficients which are independent of the instance and the local search are to be tuned at the design time;we provide a procedure to find these coefficients. The proposed approach was used to develop a memetic algorithm for the multidimensional assignment problem (MAP). We show that our adjustable population size makes the algorithm flexible to perform efficiently for a wide range of running times and local searches and this does not require any additional tuning of the algorithm

    Aeronautical engineering: A continuing bibliography, supplement 122

    Get PDF
    This bibliography lists 303 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1980
    corecore