140 research outputs found

    A survey on wireless body area networks for eHealthcare systems in residential environments

    Get PDF
    The progress in wearable and implanted health monitoring technologies has strong potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients. A typical health monitoring system consists of a network of wearable or implanted sensors that constantly monitor physiological parameters. Collected data are relayed using existing wireless communication protocols to the base station for additional processing. This article provides researchers with information to compare the existing low-power communication technologies that can potentially support the rapid development and deployment of WBAN systems, and mainly focuses on remote monitoring of elderly or chronically ill patients in residential environments

    East Lancashire Research 2007

    Get PDF

    NASA Tech Briefs, October 2013

    Get PDF
    Topics include: A Short-Range Distance Sensor with Exceptional Linearity; Miniature Trace Gas Detector Based on Microfabricated Optical Resonators; Commercial Non-Dispersive Infrared Spectroscopy Sensors for Sub-Ambient Carbon Dioxide Detection; Fast, Large-Area, Wide-Bandgap UV Photodetector for Cherenkov Light Detection; Mission Data System Java Edition Version 7; Adaptive Distributed Environment for Procedure Training (ADEPT); LEGEND, a LEO-to-GEO Environment Debris Model; Electronics/Computers; Millimeter-Wave Localizers for Aircraft-to-Aircraft Approach Navigation; Impedance Discontinuity Reduction Between High-Speed Differential Connectors and PCB Interfaces; SpaceCube Version 1.5; High-Pressure Lightweight Thrusters; Non-Magnetic, Tough, Corrosion- and Wear-Resistant Knives From Bulk Metallic Glasses and Composites; Ambient Dried Aerogels; Applications for Gradient Metal Alloys Fabricated Using Additive Manufacturing; Passivation of Flexible YBCO Superconducting Current Lead With Amorphous SiO2 Layer; Propellant-Flow-Actuated Rocket Engine Igniter; Lightweight Liquid Helium Dewar for High-Altitude Balloon Payloads; Method to Increase Performance of Foil Bearings Through Passive Thermal Management; Unibody Composite Pressurized Structure; JWST Integrated Science Instrument Module Alignment Optimization Tool; Radar Range Sidelobe Reduction Using Adaptive Pulse Compression Technique; Digitally Calibrated TR Modules Enabling Real-Time Beamforming SweepSAR Architectures; Electro-Optic Time-to-Space Converter for Optical Detector Jitter Mitigation; Partially Transparent Petaled Mask/Occulter for Visible-Range Spectrum; Educational NASA Computational and Scientific Studies (enCOMPASS); Coarse-Grain Bandwidth Estimation Scheme for Large-Scale Network; Detection of Moving Targets Using Soliton Resonance Effect; High-Efficiency Nested Hall Thrusters for Robotic Solar System Exploration; High-Voltage Clock Driver for Photon-Counting CCD Characterization; Development of the Code RITRACKS; and Enabling Microliquid Chromatography by Microbead Packing of Microchannels

    Drone Base Station Trajectory Management for Optimal Scheduling in LTE-Based Sparse Delay-Sensitive M2M Networks

    Get PDF
    Providing connectivity in areas out of reach of the cellular infrastructure is a very active area of research. This connectivity is particularly needed in case of the deployment of machine type communication devices (MTCDs) for critical purposes such as homeland security. In such applications, MTCDs are deployed in areas that are hard to reach using regular communications infrastructure while the collected data is timely critical. Drone-supported communications constitute a new trend in complementing the reach of the terrestrial communication infrastructure. In this study, drones are used as base stations to provide real-time communication services to gather critical data out of a group of MTCDs that are sparsely deployed in a marine environment. Studying different communication technologies as LTE, WiFi, LPWAN and Free-Space Optical communication (FSOC) incorporated with the drone communications was important in the first phase of this research to identify the best candidate for addressing this need. We have determined the cellular technology, and particularly LTE, to be the most suitable candidate to support such applications. In this case, an LTE base station would be mounted on the drone which will help communicate with the different MTCDs to transmit their data to the network backhaul. We then formulate the problem model mathematically and devise the trajectory planning and scheduling algorithm that decides the drone path and the resulting scheduling. Based on this formulation, we decided to compare between an Ant Colony Optimization (ACO) based technique that optimizes the drone movement among the sparsely-deployed MTCDs and a Genetic Algorithm (GA) based solution that achieves the same purpose. This optimization is based on minimizing the energy cost of the drone movement while ensuring the data transmission deadline missing is minimized. We present the results of several simulation experiments that validate the different performance aspects of the technique

    Arigatō : effects of adaptive guidance on engagement and performances in augmented reality learning environments

    Get PDF
    Funding information: This research was supported by European Commission through the InnoRenew CoE project (Grant Agreement 739574) under the Horizon2020 Widespread-Teaming program and the Republic of Slovenia (investment funding of the Republic of Slovenia and the European Union of the European Regional Development Fund). We also acknowledge support from the Slovenian research agency ARRS (program no. BI-DE/20-21-002, P1-0383, J1-9186, J1-1715, J5-1796, and J1-1692).Experiential learning (ExL) is the process of learning through experience or more specifically “learning through reflection on doing”. In this paper, we propose a simulation of these experiences, in Augmented Reality (AR), addressing the problem of language learning. Such systems provide an excellent setting to support “adaptive guidance”, in a digital form, within a real environment. Adaptive guidance allows the instructions and learning content to be customised for the individual learner, thus creating a unique learning experience. We developed an adaptive guidance AR system for language learning, we call Arigato (Augmented Reality Instructional ¯ Guidance & Tailored Omniverse), which offers immediate assistance, resources specific to the learner's needs, manipulation of these resources, and relevant feedback. Considering guidance, we employ this prototype to investigate the effect of the amount of guidance (fixed vs. adaptive-amount) and the type of guidance (fixed vs. adaptive-associations) on the engagement and consequently the learning outcomes of language learning in an AR environment. The results for the amount of guidance show that compared to the adaptive-amount, the fixed-amount of guidance group scored better in the immediate and delayed (after 7 days) recall tests. However, this group also invested a significantly higher mental effort to complete the task. The results for the type of guidance show that the adaptive-associations group outperforms the fixed-associations group in the immediate, delayed (after 7 days) recall tests, and learning efficiency. The adaptive-associations group also showed significantly lower mental effort and spent less time to complete the task.PostprintPeer reviewe

    Open motion control architecture for humanoid robots

    Get PDF
    This Ph.D. thesis contributes to the development of control architecture for robots. It provides a complex study of a control systems design and makes a proposal for generalized open motion control architecture for humanoid robots. Generally speaking, the development of humanoid robots is a very complex engineering and scientific task that requires new approaches in mechanical design, electronics, software engineering and control. First of all, taking into account all these considerations, this thesis tries to answer the question of why we need the development of such robots. Further, it provides a study of the evolution of humanoid robots, as well as an analysis of modern trends. A complex study of motion, that for humanoid robots, means first of all the biped locomotion is addressed. Requirements for the design of open motion control architecture are posed. This work stresses the motion control algorithms for humanoid robots. The implementation of only servo control for some types of robots (especially for walking systems) is not sufficient. Even having stable motion pattern and well tuned joint control, a humanoid robot can fall down while walking. Therefore, these robots need the implementation of another, upper control loop which will provide the stabilization of their motion. This Ph.D. thesis proposes the study of a joint motion control problem and a new solution to walking stability problem for humanoids. A new original walking stabilization controller based on decoupled double inverted pendulum dynamical model is developed. This Ph.D. thesis proposes novel motion control software and hardware architecture for humanoid robots. The main advantage of this architecture is that it was designed by an open systems approach allowing the development of high-quality humanoid robotics platforms that are technologically up-to-date. The Rh-1 prototype of the humanoid robot was constructed and used as a test platform for implementing the concepts described in this Ph.D. thesis. Also, the implementation of walking stabilization control algorithms was made with OpenHRP platform and HRP-2 humanoid robot. The simulations and walking experiments showed favourable results not only in forward walking but also in turning and backwards walking gaits. It proved the applicability and reliability of designed open motion control architecture for humanoid robots. Finally, it should be noted that this Ph.D. thesis considers the motion control system of a humanoid robot as a whole, stresses the entire concept-design-implementation chain and develops basic guidelines for the design of open motion control architecture that can be easily implemented in other biped platforms

    Algorithmic Compositional Methods and their Role in Genesis: A Multi-Functional Real-Time Computer Music System

    Get PDF
    Algorithmic procedures have been applied in computer music systems to generate compositional products using conventional musical formalism, extensions of such musical formalism and extra-musical disciplines such as mathematical models. This research investigates the applicability of such algorithmic methodologies for real-time musical composition, culminating in Genesis, a multi-functional real-time computer music system written for Mac OS X in the SuperCollider object-oriented programming language, and contained in the accompanying DVD. Through an extensive graphical user interface, Genesis offers musicians the opportunity to explore the application of the sonic features of real-time sound-objects to designated generative processes via different models of interaction such as unsupervised musical composition by Genesis and networked control of external Genesis instances. As a result of the applied interactive, generative and analytical methods, Genesis forms a unique compositional process, with a compositional product that reflects the character of its interactions between the sonic features of real-time sound-objects and its selected algorithmic procedures. Within this thesis, the technologies involved in algorithmic methodologies used for compositional processes, and the concepts that define their constructs are described, with consequent detailing of their selection and application in Genesis, with audio examples of algorithmic compositional methods demonstrated on the accompanying DVD. To demonstrate the real-time compositional abilities of Genesis, free explorations with instrumentalists, along with studio recordings of the compositional processes available in Genesis are presented in audiovisual examples contained in the accompanying DVD. The evaluation of the Genesis system’s capability to form a real-time compositional process, thereby maintaining real-time interaction between the sonic features of real-time sound objects and its selected algorithmic compositional methods, focuses on existing evaluation techniques founded in HCI and the qualitative issues such evaluation methods present. In terms of the compositional products generated by Genesis, the challenges in quantifying and qualifying its compositional outputs are identified, demonstrating the intricacies of assessing generative methods of compositional processes, and their impact on a resulting compositional product. The thesis concludes by considering further advances and applications of Genesis, and inviting further dissemination of the Genesis system and promotion of research into evaluative methods of generative techniques, with the hope that this may provide additional insight into the relative success of products generated by real-time algorithmic compositional processes

    High Performance Network Evaluation and Testing

    Get PDF
    corecore