19 research outputs found

    Design of 28 GHz 4x4 RF Beamforming Array for 5G Radio Front-Ends

    Get PDF
    Current state of wireless infrastructure sees mass migration to higher frequencies as much of the already used spectrum is insufficient in supporting the influx of numerous users and various data intensive mobile applications. Data rates are projected to increase by an order of magnitude and harnessing the necessary bandwidth below 6 GHz is not feasible. A move to higher frequencies sees not only increased fractional bandwidth, but also significantly enhanced antenna apertures as a result of beamforming capabilities. Due to device level complications with frequencies nearing the unit gain frequency of transistor technology, high output power is seldom found, and in conjunction with severe path loss, communication links cannot be established without the usage of antenna arrays. Phased array systems offer significant upside to the traditional array implementation as it permits reconfigurable directive communication. However, Ka-Band phased arrays still struggle to arrive at a reasonable tradeoff between design complexity, cost and performance. With a divide between both organic and printed circuit board (PCB) based approaches to the development of an antenna-in-package (AiP), this thesis sides with the latter. An antenna-on-PCB variant of the AiP is developed, which implements both commercially available RF laminates and RFIC front end modules to produce a 28 GHz 4x4 RF beamforming phased array that is found to exhibit extremely low loss (-0.66 dB), adequate scan volume (+/- 45 degrees, in E and H planes) and large bandwidth (3 GHz) for a single layer, non-isolated patch antenna design. Unit cell, infinite array analysis is emphasized and lattice resizing is leveraged to obtain desired scan performance, while significantly reducing design complexity via the absence of intricate isolation enhancement techniques. In an effort to aid in application based design, the AiP is extended to application of linearization where it is found that the inclusion of dummy elements along the perimeter of the package not only serve as element pattern enhancement, but also provide reliable means of output signal capture. Negating the traditional transmitter observation receiver (TOR) architecture, the AiP design as a TOR for millimeter-wave communication proves optimistic in the quest for maximum system efficiency

    Concepts for Short Range Millimeter-wave Miniaturized Radar Systems with Built-in Self-Test

    Get PDF
    This work explores short-range millimeter wave radar systems, with emphasis on miniaturization and overall system cost reduction. The designing and implementation processes, starting from the system level design considerations and characterization of the individual components to final implementation of the proposed architecture are described briefly. Several D-band radar systems are developed and their functionality and performances are demonstrated

    Space Station Furnace Facility. Volume 2: Requirements Definition and Conceptual Design Study. Appendix 3: Environment Analysis

    Get PDF
    A Preliminary Safety Analysis (PSA) is being accomplished as part of the Space Station Furnace Facility (SSFF) contract. This analysis is intended to support SSFF activities by analyzing concepts and designs as they mature to develop essential safety requirements for inclusion in the appropriate specifications, and designs, as early as possible. In addition, the analysis identifies significant safety concerns that may warrant specific trade studies or design definition, etc. The analysis activity to date concentrated on hazard and hazard cause identification and requirements development with the goal of developing a baseline set of detailed requirements to support trade study, specifications development, and preliminary design activities. The analysis activity will continue as the design and concepts mature. Section 2 defines what was analyzed, but it is likely that the SSFF definitions will undergo further changes. The safety analysis activity will reflect these changes as they occur. The analysis provides the foundation for later safety activities. The hazards identified will in most cases have Preliminary Design Review (PDR) applicability. The requirements and recommendations developed for each hazard will be tracked to ensure proper and early resolution of safety concerns
    corecore