633 research outputs found

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided

    Preferred color correction for mixed taking-illuminant placement and cropping

    Get PDF
    The growth of automatic layout capabilities for publications such as photo books and image sharing websites enables consumers to create personalized presentations without much experience or the use of professional page design software. Automated color correction of images has been well studied over the years, but the methodology for determining how to correct images has almost exclusively considered images as independent indivisible objects. In modern documents, such as photo books or web sharing sites, images are automatically placed on pages in juxtaposition to others and some images are automatically cropped. Understanding how color correction preferences are impacted by complex arrangements has become important. A small number of photographs taken under a variety illumination conditions were presented to observers both individually and in combinations. Cropped and uncropped versions of the shots were included. Users had opportunities to set preferred color balance and chroma for the images within the experiment. Analyses point toward trends indicating a preference for higher chroma for most cropped images in comparison to settings for the full spatial extent images. It is also shown that observers make different color balance choices when correcting an image in isolation versus when correcting the same image in the presence of a second shot taken under a different illuminant. Across 84 responses, approximately 60% showed the tendency to choose image white points that were further from the display white point when multiple images from different taking illuminants were simultaneously presented versus when the images were adjusted in isolation on the same display. Observers were also shown to preserve the relative white point bias of the original taking illuminants

    LUMINANCE DESIGN A SIMULATION USING COLOUR TELEVISION

    Get PDF
    A successful lighting design usually results from the skill of the designer in applying professional experience. However, successful designs have been achieved using numerical prediction. It is probable that a blend of both these elements will give the optimum result. Whatever the design approach, the end product will be judged, at least in part, on its aesthetic merits. The first chapter of this thesis introduces the possibility of using a digital computer in conjunction with a colour television monitor to calculate and display the luminance distribution in a lighted room; a system which may offer advantages both for the experienced designer and the student of lighting design. The display system is described briefly, along with some possible shortcomings. An account is given of the methods used for inter-reflection calculation. These inter-reflection calculations are then developed to include colour and techniques of photometric and colorimetric measurement with reference to the television display. A complete description of the display system hardware is also given. This display system as initially designed uses chromaticity as the criterion for colour reproduction. The shortcomings of this approach are discussed. Techniques for perceived colour measurement are described and the results presented for the colour perceived from some simple display images. The possibility of perceived colour prediction is examined and measured colours are compared with those predicted by a non-linear model. Finally, the applications of the display are discussed, both in an educational and design context. Some possible developments and improvements are also outlined

    Colorimetric tolerances of digital images

    Get PDF
    An environment to derive colorimetric tolerances of images was established and an experiment using this new environment was performed. This environment allows for images to be digitally captured, colorimetrically manipulated, displayed, observed, and statistically evaluated. The visual experiment measured perceptibility and acceptability colorimetric tolerances for images using paired comparison techniques. Thirty-two observers judged six typical photographic scenes displayed on a high resolution color monitor. These scenes were manipulated using ten linear and nonlinear functions in the CIELAB dimensions of lightness, chroma, and hue angle. The tolerances were determined using probit analysis. It was found that scene content did not significantly affect the tolerances. The CIELAB, CMC, and MCSL color difference equations were shown to be inadequate for accurately modeling image tolerances. Finally, possible applications of this work are described

    Toward color image segmentation in analog VLSI: Algorithm and hardware

    Get PDF
    Standard techniques for segmenting color images are based on finding normalized RGB discontinuities, color histogramming, or clustering techniques in RGB or CIE color spaces. The use of the psychophysical variable hue in HSI space has not been popular due to its numerical instability at low saturations. In this article, we propose the use of a simplified hue description suitable for implementation in analog VLSI. We demonstrate that if theintegrated white condition holds, hue is invariant to certain types of highlights, shading, and shadows. This is due to theadditive/shift invariance property, a property that other color variables lack. The more restrictive uniformly varying lighting model associated with themultiplicative/scale invariance property shared by both hue and normalized RGB allows invariance to transparencies, and to simple models of shading and shadows. Using binary hue discontinuities in conjunction with first-order type of surface interpolation, we demonstrate these invariant properties and compare them against the performance of RGB, normalized RGB, and CIE color spaces. We argue that working in HSI space offers an effective method for segmenting scenes in the presence of confounding cues due to shading, transparency, highlights, and shadows. Based on this work, we designed and fabricated for the first time an analog CMOS VLSI circuit with on-board phototransistor input that computes normalized color and hue

    Expanding Dimensionality in Cinema Color: Impacting Observer Metamerism through Multiprimary Display

    Get PDF
    Television and cinema display are both trending towards greater ranges and saturation of reproduced colors made possible by near-monochromatic RGB illumination technologies. Through current broadcast and digital cinema standards work, system designs employing laser light sources, narrow-band LED, quantum dots and others are being actively endorsed in promotion of Wide Color Gamut (WCG). Despite artistic benefits brought to creative content producers, spectrally selective excitations of naturally different human color response functions exacerbate variability of observer experience. An exaggerated variation in color-sensing is explicitly counter to the exhaustive controls and calibrations employed in modern motion picture pipelines. Further, singular standard observer summaries of human color vision such as found in the CIE’s 1931 and 1964 color matching functions and used extensively in motion picture color management are deficient in recognizing expected human vision variability. Many researchers have confirmed the magnitude of observer metamerism in color matching in both uniform colors and imagery but few have shown explicit color management with an aim of minimized difference in observer perception variability. This research shows that not only can observer metamerism influences be quantitatively predicted and confirmed psychophysically but that intentionally engineered multiprimary displays employing more than three primaries can offer increased color gamut with drastically improved consistency of experience. To this end, a seven-channel prototype display has been constructed based on observer metamerism models and color difference indices derived from the latest color vision demographic research. This display has been further proven in forced-choice paired comparison tests to deliver superior color matching to reference stimuli versus both contemporary standard RGB cinema projection and recently ratified standard laser projection across a large population of color-normal observers

    Quantitative rainbow schlieren deflectometry

    Get PDF
    In the rainbow schlieren apparatus, a continuously graded rainbow filter is placed in the back focal plane of the decollimating lens. Refractive-index gradients in the test section thus appear as gradations in hue rather than irradiance. A simple system is described wherein a conventional color CCD array and video digitizer are used to quantify accurately the color attributes of the resulting image, and hence the associated ray deflections. The present system provides a sensitivity comparable with that of conventional interferometry, while being simpler to implement and less sensitive to mechanical misalignment

    A testing procedure to characterize color and spatial quality of digital cameras used to image cultural heritage

    Get PDF
    A testing procedure for characterizing both the color and spatial image quality of trichromatic digital cameras, which are used to photograph paintings in cultural heritage institutions, is described. This testing procedure is target-based, thus providing objective measures of quality. The majority of the testing procedure followed current standards from national and international organizations such as ANSI, ISO, and IEC. The procedure was developed in an academic research laboratory and used to benchmark four representative American museum’s digital-camera systems and workflows. The quality parameters tested included system spatial uniformity, tone reproduction, color reproduction accuracy, noise, dynamic range, spatial cross-talk, spatial frequency response, color-channel registration, and depth of field. In addition, two paintings were imaged and processed through each museum’s normal digital workflow. The results of the four case studies showed many dissimilarities among the digital-camera systems and workflows of American museums, which causes a significant range in the archival quality of their digital masters

    A novel RGBW pixel for LED displays

    Full text link
    In this work, a novel pixel configuration RGBW, consisting of red (R), green (G), blue (B), and white (W) LEDs, is employed and investigated for color generation. Energy consumption and various hues of new pixels are compared to standard pixels consisting of RGB LEDs. Human perception experiments are conducted in order to study the perceptual difference between the two architectures when the same colors are generated using RGBW vs. RGB. Power measurements for an 8x8 pixel LED display has demonstrated up to 49% power savings for gray scale, over 30% power savings for low saturated colors, and up to 12% for high saturated colors using RGBW as an alternative. Furthermore, human perception studies has shown that vast majority of test subjects could not distinguish between most colors displayed using RGB and RGBW showing that RGBW is an excellent substitute for RGB. Statistics has shown that 44% of test subjects found the colors in gray scale to be the same, whereas 82% and 95% of test subject found low saturated colors and high saturated colors, respectively, to be identical
    • …
    corecore