22 research outputs found

    Relevant data representation by a Kernel-based framework

    Get PDF
    Nowadays, the analysis of a large amount of data has emerged as an issue of great interest taking increasing place in the scientific community, especially in automation, signal processing, pattern recognition, and machine learning. In this sense, the identification, description, classification, visualization, and clustering of events or patterns are important problems for engineering developments and scientific issues, such as biology, medicine, economy, artificial vision, artificial intelligence, and industrial production. Nonetheless, it is difficult to interpret the available information due to its complexity and a large amount of obtained features. In addition, the analysis of the input data requires the development of methodologies that allow to reveal the relevant behaviors of the studied process, particularly, when such signals contain hidden structures varying over a given domain, e.g., space and/or time. When the analyzed signal contains such kind of properties, directly applying signal processing and machine learning procedures without considering a suitable model that deals with both the statistical distribution and the data structure, can lead in unstable performance results. Regarding this, kernel functions appear as an alternative approach to address the aforementioned issues by providing flexible mathematical tools that allow enhancing data representation for supporting signal processing and machine learning systems. Moreover, kernelbased methods are powerful tools for developing better-performing solutions by adapting the kernel to a given problem, instead of learning data relationships from explicit raw vector representations. However, building suitable kernels requires some user prior knowledge about input data, which is not available in most of the practical cases. Furthermore, using the definitions of traditional kernel methods directly, possess a challenging estimation problem that often leads to strong simplifications that restrict the kind of representation that we can use on the data. In this study, we propose a data representation framework based on kernel methods to learn automatically relevant sample relationships in learning systems. Namely, the proposed framework is divided into five kernel-based approaches, which aim to compute relevant data representations by adapting them according to both the imposed sample relationships constraints and the learning scenario (unsupervised or supervised task). First, we develop a kernel-based representation approach that allows revealing the main input sample relations by including relevant data structures using graph-based sparse constraints. Thus, salient data structures are highlighted aiming to favor further unsupervised clustering stages. This approach can be viewed as a graph pruning strategy within a spectral clustering framework which allows enhancing both the local and global data consistencies for a given input similarity matrix. Second, we introduce a kernel-based representation methodology that captures meaningful data relations in terms of their statistical distribution. Thus, an information theoretic learning (ITL) based penalty function is introduced to estimate a kernel-based similarity that maximizes the whole information potential variability. So, we seek for a reproducing kernel Hilbert space (RKHS) that spans the widest information force magnitudes among data points to support further clustering stages. Third, an entropy-like functional on positive definite matrices based on Renyi’s definition is adapted to develop a kernel-based representation approach which considers the statistical distribution and the salient data structures. Thereby, relevant input patterns are highlighted in unsupervised learning tasks. Particularly, the introduced approach is tested as a tool to encode relevant local and global input data relationships in dimensional reduction applications. Fourth, a supervised kernel-based representation is introduced via a metric learning procedure in RKHS that takes advantage of the user-prior knowledge, when available, regarding the studied learning task. Such an approach incorporates the proposed ITL-based kernel functional estimation strategy to adapt automatically the relevant representation using both the supervised information and the input data statistical distribution. As a result, relevant sample dependencies are highlighted by weighting the input features that mostly encode the supervised learning task. Finally, a new generalized kernel-based measure is proposed by taking advantage of different RKHSs. In this way, relevant dependencies are highlighted automatically by considering the input data domain-varying behavior and the user-prior knowledge (supervised information) when available. The proposed measure is an extension of the well-known crosscorrentropy function based on Hilbert space embeddings. Throughout the study, the proposed kernel-based framework is applied to biosignal and image data as an alternative to support aided diagnosis systems and image-based object analysis. Indeed, the introduced kernel-based framework improve, in most of the cases, unsupervised and supervised learning performances, aiding researchers in their quest to process and to favor the understanding of complex dataResumen: Hoy en día, el análisis de datos se ha convertido en un tema de gran interés para la comunidad científica, especialmente en campos como la automatización, el procesamiento de señales, el reconocimiento de patrones y el aprendizaje de máquina. En este sentido, la identificación, descripción, clasificación, visualización, y la agrupación de eventos o patrones son problemas importantes para desarrollos de ingeniería y cuestiones científicas, tales como: la biología, la medicina, la economía, la visión artificial, la inteligencia artificial y la producción industrial. No obstante, es difícil interpretar la información disponible debido a su complejidad y la gran cantidad de características obtenidas. Además, el análisis de los datos de entrada requiere del desarrollo de metodologías que permitan revelar los comportamientos relevantes del proceso estudiado, en particular, cuando tales señales contienen estructuras ocultas que varían sobre un dominio dado, por ejemplo, el espacio y/o el tiempo. Cuando la señal analizada contiene este tipo de propiedades, los rendimientos pueden ser inestables si se aplican directamente técnicas de procesamiento de señales y aprendizaje automático sin tener en cuenta la distribución estadística y la estructura de datos. Al respecto, las funciones núcleo (kernel) aparecen como un enfoque alternativo para abordar las limitantes antes mencionadas, proporcionando herramientas matemáticas flexibles que mejoran la representación de los datos de entrada. Por otra parte, los métodos basados en funciones núcleo son herramientas poderosas para el desarrollo de soluciones de mejor rendimiento mediante la adaptación del núcleo de acuerdo al problema en estudio. Sin embargo, la construcción de funciones núcleo apropiadas requieren del conocimiento previo por parte del usuario sobre los datos de entrada, el cual no está disponible en la mayoría de los casos prácticos. Por otra parte, a menudo la estimación de las funciones núcleo conllevan sesgos el modelo, siendo necesario apelar a simplificaciones matemáticas que no siempre son acordes con la realidad. En este estudio, se propone un marco de representación basado en métodos núcleo para resaltar relaciones relevantes entre los datos de forma automática en sistema de aprendizaje de máquina. A saber, el marco propuesto consta de cinco enfoques núcleo, en aras de adaptar la representación de acuerdo a las relaciones impuestas sobre las muestras y sobre el escenario de aprendizaje (sin/con supervisión). En primer lugar, se desarrolla un enfoque de representación núcleo que permite revelar las principales relaciones entre muestras de entrada mediante la inclusión de estructuras relevantes utilizando restricciones basadas en modelado por grafos. Por lo tanto, las estructuras de datos más sobresalientes se destacan con el objetivo de favorecer etapas posteriores de agrupamiento no supervisado. Este enfoque puede ser visto como una estrategia de depuración de grafos dentro de un marco de agrupamiento espectral que permite mejorar las consistencias locales y globales de los datos En segundo lugar, presentamos una metodología de representación núcleo que captura relaciones significativas entre muestras en términos de su distribución estadística. De este modo, se introduce una función de costo basada en aprendizaje por teoría de la información para estimar una similitud que maximice la variabilidad del potencial de información de los datos de entrada. Así, se busca un espacio de Hilbert generado por el núcleo que contenga altas fuerzas de información entre los puntos para favorecer el agrupamiento entre los mismos. En tercer lugar, se propone un esquema de representación que incluye un funcional de entropía para matrices definidas positivas a partir de la definición de Renyi. En este sentido, se pretenden incluir la distribución estadística de las muestras y sus estructuras relevantes. Por consiguiente, los patrones de entrada pertinentes se destacan en tareas de aprendizaje sin supervisión. En particular, el enfoque introducido se prueba como una herramienta para codificar las relaciones locales y globales de los datos en tareas de reducción de dimensión. En cuarto lugar, se introduce una metodología de representación núcleo supervisada a través de un aprendizaje de métrica en el espacio de Hilbert generado por una función núcleo en aras de aprovechar el conocimiento previo del usuario con respecto a la tarea de aprendizaje. Este enfoque incorpora un funcional por teoría de información que permite adaptar automáticamente la representación utilizando tanto información supervisada y la distribución estadística de los datos de entrada. Como resultado, las dependencias entre las muestras se resaltan mediante la ponderación de las características de entrada que codifican la tarea de aprendizaje supervisado. Por último, se propone una nueva medida núcleo mediante el aprovechamiento de diferentes espacios de representación. De este modo, las dependencias más relevantes entre las muestras se resaltan automáticamente considerando el dominio de interés de los datos de entrada y el conocimiento previo del usuario (información supervisada). La medida propuesta es una extensión de la función de cross-correntropia a partir de inmersiones en espacios de Hilbert. A lo largo del estudio, el esquema propuesto se valida sobre datos relacionados con bioseñales e imágenes como una alternativa para apoyar sistemas de apoyo diagnóstico y análisis objetivo basado en imágenes. De hecho, el marco introducido permite mejorar, en la mayoría de los casos, el rendimiento de sistemas de aprendizaje supervisado y no supervisado, favoreciendo la precisión de la tarea y la interpretabilidad de los datosDoctorad

    Robust Ellipsoid Fitting Using Axial Distance and Combination

    Full text link
    In random sample consensus (RANSAC), the problem of ellipsoid fitting can be formulated as a problem of minimization of point-to-model distance, which is realized by maximizing model score. Hence, the performance of ellipsoid fitting is affected by distance metric. In this paper, we proposed a novel distance metric called the axial distance, which is converted from the algebraic distance by introducing a scaling factor to solve nongeometric problems of the algebraic distance. There is complementarity between the axial distance and Sampson distance because their combination is a stricter metric when calculating the model score of sample consensus and the weight of the weighted least squares (WLS) fitting. Subsequently, a novel sample-consensus-based ellipsoid fitting method is proposed by using the combination between the axial distance and Sampson distance (CAS). We compare the proposed method with several representative fitting methods through experiments on synthetic and real datasets. The results show that the proposed method has a higher robustness against outliers, consistently high accuracy, and a speed close to that of the method based on sample consensus.Comment: 13 page

    Multivariate multiscale complexity analysis

    No full text
    Established dynamical complexity analysis measures operate at a single scale and thus fail to quantify inherent long-range correlations in real world data, a key feature of complex systems. They are designed for scalar time series, however, multivariate observations are common in modern real world scenarios and their simultaneous analysis is a prerequisite for the understanding of the underlying signal generating model. To that end, this thesis first introduces a notion of multivariate sample entropy and thus extends the current univariate complexity analysis to the multivariate case. The proposed multivariate multiscale entropy (MMSE) algorithm is shown to be capable of addressing the dynamical complexity of such data directly in the domain where they reside, and at multiple temporal scales, thus making full use of all the available information, both within and across the multiple data channels. Next, the intrinsic multivariate scales of the input data are generated adaptively via the multivariate empirical mode decomposition (MEMD) algorithm. This allows for both generating comparable scales from multiple data channels, and for temporal scales of same length as the length of input signal, thus, removing the critical limitation on input data length in current complexity analysis methods. The resulting MEMD-enhanced MMSE method is also shown to be suitable for non-stationary multivariate data analysis owing to the data-driven nature of MEMD algorithm, as non-stationarity is the biggest obstacle for meaningful complexity analysis. This thesis presents a quantum step forward in this area, by introducing robust and physically meaningful complexity estimates of real-world systems, which are typically multivariate, finite in duration, and of noisy and heterogeneous natures. This also allows us to gain better understanding of the complexity of the underlying multivariate model and more degrees of freedom and rigor in the analysis. Simulations on both synthetic and real world multivariate data sets support the analysis

    Advances in Nonnegative Matrix Decomposition with Application to Cluster Analysis

    Get PDF
    Nonnegative Matrix Factorization (NMF) has found a wide variety of applications in machine learning and data mining. NMF seeks to approximate a nonnegative data matrix by a product of several low-rank factorizing matrices, some of which are constrained to be nonnegative. Such additive nature often results in parts-based representation of the data, which is a desired property especially for cluster analysis.  This thesis presents advances in NMF with application in cluster analysis. It reviews a class of higher-order NMF methods called Quadratic Nonnegative Matrix Factorization (QNMF). QNMF differs from most existing NMF methods in that some of its factorizing matrices occur twice in the approximation. The thesis also reviews a structural matrix decomposition method based on Data-Cluster-Data (DCD) random walk. DCD goes beyond matrix factorization and has a solid probabilistic interpretation by forming the approximation with cluster assigning probabilities only. Besides, the Kullback-Leibler divergence adopted by DCD is advantageous in handling sparse similarities for cluster analysis.  Multiplicative update algorithms have been commonly used for optimizing NMF objectives, since they naturally maintain the nonnegativity constraint of the factorizing matrix and require no user-specified parameters. In this work, an adaptive multiplicative update algorithm is proposed to increase the convergence speed of QNMF objectives.  Initialization conditions play a key role in cluster analysis. In this thesis, a comprehensive initialization strategy is proposed to improve the clustering performance by combining a set of base clustering methods. The proposed method can better accommodate clustering methods that need a careful initialization such as the DCD.  The proposed methods have been tested on various real-world datasets, such as text documents, face images, protein, etc. In particular, the proposed approach has been applied to the cluster analysis of emotional data

    Recent Developments in Smart Healthcare

    Get PDF
    Medicine is undergoing a sector-wide transformation thanks to the advances in computing and networking technologies. Healthcare is changing from reactive and hospital-centered to preventive and personalized, from disease focused to well-being centered. In essence, the healthcare systems, as well as fundamental medicine research, are becoming smarter. We anticipate significant improvements in areas ranging from molecular genomics and proteomics to decision support for healthcare professionals through big data analytics, to support behavior changes through technology-enabled self-management, and social and motivational support. Furthermore, with smart technologies, healthcare delivery could also be made more efficient, higher quality, and lower cost. In this special issue, we received a total 45 submissions and accepted 19 outstanding papers that roughly span across several interesting topics on smart healthcare, including public health, health information technology (Health IT), and smart medicine

    Robust subspace learning for static and dynamic affect and behaviour modelling

    Get PDF
    Machine analysis of human affect and behavior in naturalistic contexts has witnessed a growing attention in the last decade from various disciplines ranging from social and cognitive sciences to machine learning and computer vision. Endowing machines with the ability to seamlessly detect, analyze, model, predict as well as simulate and synthesize manifestations of internal emotional and behavioral states in real-world data is deemed essential for the deployment of next-generation, emotionally- and socially-competent human-centered interfaces. In this thesis, we are primarily motivated by the problem of modeling, recognizing and predicting spontaneous expressions of non-verbal human affect and behavior manifested through either low-level facial attributes in static images or high-level semantic events in image sequences. Both visual data and annotations of naturalistic affect and behavior naturally contain noisy measurements of unbounded magnitude at random locations, commonly referred to as ‘outliers’. We present here machine learning methods that are robust to such gross, sparse noise. First, we deal with static analysis of face images, viewing the latter as a superposition of mutually-incoherent, low-complexity components corresponding to facial attributes, such as facial identity, expressions and activation of atomic facial muscle actions. We develop a robust, discriminant dictionary learning framework to extract these components from grossly corrupted training data and combine it with sparse representation to recognize the associated attributes. We demonstrate that our framework can jointly address interrelated classification tasks such as face and facial expression recognition. Inspired by the well-documented importance of the temporal aspect in perceiving affect and behavior, we direct the bulk of our research efforts into continuous-time modeling of dimensional affect and social behavior. Having identified a gap in the literature which is the lack of data containing annotations of social attitudes in continuous time and scale, we first curate a new audio-visual database of multi-party conversations from political debates annotated frame-by-frame in terms of real-valued conflict intensity and use it to conduct the first study on continuous-time conflict intensity estimation. Our experimental findings corroborate previous evidence indicating the inability of existing classifiers in capturing the hidden temporal structures of affective and behavioral displays. We present here a novel dynamic behavior analysis framework which models temporal dynamics in an explicit way, based on the natural assumption that continuous- time annotations of smoothly-varying affect or behavior can be viewed as outputs of a low-complexity linear dynamical system when behavioral cues (features) act as system inputs. A novel robust structured rank minimization framework is proposed to estimate the system parameters in the presence of gross corruptions and partially missing data. Experiments on prediction of dimensional conflict and affect as well as multi-object tracking from detection validate the effectiveness of our predictive framework and demonstrate that for the first time that complex human behavior and affect can be learned and predicted based on small training sets of person(s)-specific observations.Open Acces

    Deep Colorization for Facial Gender Recognition

    Get PDF

    Predicting chaotic time series using machine learning techniques

    Get PDF
    corecore