90 research outputs found

    A Review of Sensor Technologies for Perception in Automated Driving

    Get PDF
    After more than 20 years of research, ADAS are common in modern vehicles available in the market. Automated Driving systems, still in research phase and limited in their capabilities, are starting early commercial tests in public roads. These systems rely on the information provided by on-board sensors, which allow to describe the state of the vehicle, its environment and other actors. Selection and arrangement of sensors represent a key factor in the design of the system. This survey reviews existing, novel and upcoming sensor technologies, applied to common perception tasks for ADAS and Automated Driving. They are put in context making a historical review of the most relevant demonstrations on Automated Driving, focused on their sensing setup. Finally, the article presents a snapshot of the future challenges for sensing technologies and perception, finishing with an overview of the commercial initiatives and manufacturers alliances that will show future market trends in sensors technologies for Automated Vehicles.This work has been partly supported by ECSEL Project ENABLE- S3 (with grant agreement number 692455-2), by the Spanish Government through CICYT projects (TRA2015- 63708-R and TRA2016-78886-C3-1-R)

    ์ž์œจ ์ฃผํ–‰ ์‹œ์Šคํ…œ์˜ ์ฐจ๋Ÿ‰ ์•ˆ์ „์„ ์œ„ํ•œ ์ ์‘ํ˜• ๊ด€์‹ฌ ์˜์—ญ ๊ธฐ๋ฐ˜ ํšจ์œจ์  ํ™˜๊ฒฝ ์ธ์ง€

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€,2020. 2. ์ด๊ฒฝ์ˆ˜.์ „ ์„ธ๊ณ„์ ์œผ๋กœ ์ž๋™์ฐจ ์‚ฌ๊ณ ๋กœ 120 ๋งŒ ๋ช…์ด ์‚ฌ๋งํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๊ตํ†ต ์‚ฌ๊ณ ์— ๋Œ€ํ•œ ๊ธฐ๋ณธ์ ์ธ ์˜ˆ๋ฐฉ ์กฐ์น˜์— ๋Œ€ํ•œ ๋…ผ์˜๊ฐ€ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ํ†ต๊ณ„ ์ž๋ฃŒ์— ๋”ฐ๋ฅด๋ฉด ๊ตํ†ต ์‚ฌ๊ณ ์˜ 94 %๊ฐ€ ์ธ์  ์˜ค๋ฅ˜์— ๊ธฐ์ธํ•œ๋‹ค. ๋„๋กœ ์•ˆ์ „ ํ™•๋ณด์˜ ๊ด€์ ์—์„œ ์ž์œจ ์ฃผํ–‰ ๊ธฐ์ˆ ์€ ์ด๋Ÿฌํ•œ ์‹ฌ๊ฐํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ์จ ๊ด€์‹ฌ์ด ๋†’์•„์กŒ์œผ๋ฉฐ, ์—ฐ๊ตฌ ๊ฐœ๋ฐœ์„ ํ†ตํ•ด ๋‹จ๊ณ„์  ์ƒ์šฉํ™”๊ฐ€ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. ์ฃผ์š” ์ž๋™์ฐจ ์ œ์กฐ์—…์ฒด๋Š” ์ด๋ฏธ ์ฐจ์„  ์œ ์ง€ ๋ณด์กฐ์žฅ์น˜ (LKAS: Lane Keeping Assistant System), ์ ์‘ํ˜• ์ˆœํ•ญ ์ œ์–ด ์‹œ์Šคํ…œ(ACC: Adaptive Cruise Control), ์ฃผ์ฐจ ๋ณด์กฐ ์‹œ์Šคํ…œ (PAS: Parking Assistance System), ์ž๋™ ๊ธด๊ธ‰ ์ œ๋™์žฅ์น˜ (AEB: Automated Emergency Braking) ๋“ฑ์˜ ์ฒจ๋‹จ ์šด์ „์ž ๋ณด์กฐ ์‹œ์Šคํ…œ (ADAS)์„ ๊ฐœ๋ฐœํ•˜๊ณ  ์ƒ์šฉํ™”ํ•˜์˜€๋‹ค. ๋˜ํ•œ Audi์˜ Audi AI Traffic Jam Pilot, Tesla์˜ Autopilot, Mercedes-Benz์˜ Distronic Plus, ํ˜„๋Œ€์ž๋™์ฐจ์˜ Highway Driving Assist ๋ฐ BMW์˜ Driving Assistant Plus ์™€ ๊ฐ™์€ ๋ถ€๋ถ„ ์ž์œจ ์ฃผํ–‰ ์‹œ์Šคํ…œ์ด ์ถœ์‹œ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ถ€๋ถ„ ์ž์œจ ์ฃผํ–‰ ์‹œ์Šคํ…œ์€ ์—ฌ์ „ํžˆ ์šด์ „์ž์˜ ์ฃผ์˜๊ฐ€ ์ˆ˜๋ฐ˜๋˜์–ด์•ผ ํ•จ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์•ˆ์ „์„ฑ์„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐ ํšจ๊ณผ์ ์ด๊ธฐ ๋•Œ๋ฌธ์— ์ง€์†์ ์œผ๋กœ ๊ทธ ์ˆ˜์š”๊ฐ€ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ์ตœ๊ทผ ๋ช‡ ๋…„๊ฐ„ ๋งŽ์€ ์ˆ˜์˜ ์ž์œจ์ฃผํ–‰ ์‚ฌ๊ณ ๊ฐ€ ๋ฐœ์ƒํ•˜์˜€์œผ๋ฉฐ, ๊ทธ ๋นˆ๋„์ˆ˜๊ฐ€ ๋น ๋ฅด๊ฒŒ ์ฆ๊ฐ€ํ•˜์—ฌ ์‚ฌํšŒ์ ์œผ๋กœ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋‹ค. ์ฐจ๋Ÿ‰ ์‚ฌ๊ณ ๋Š” ์ธ๋ช… ์‚ฌ๊ณ ์™€ ์ง์ ‘์ ์œผ๋กœ ์—ฐ๊ด€๋˜๊ธฐ ๋•Œ๋ฌธ์— ์ž์œจ ์ฃผํ–‰ ์ฐจ๋Ÿ‰์˜ ์‚ฌ๊ณ ๋“ค์€ ์ž์œจ ์ฃผํ–‰ ๊ธฐ์ˆ  ์‹ ๋ขฐ์„ฑ์˜ ์ €ํ•˜๋ฅผ ์•ผ๊ธฐํ•˜์—ฌ ์‚ฌํšŒ์ ์ธ ๋ถˆ์•ˆ๊ฐ์„ ํ‚ค์šด๋‹ค. ์ตœ๊ทผ ์ž์œจ ์ฃผํ–‰ ๊ด€๋ จ ์‚ฌ๊ณ ๋“ค๋กœ ์ธํ•ด, ์ž์œจ์ฃผํ–‰ ์ฐจ๋Ÿ‰์˜ ์•ˆ์ „์„ฑ์˜ ๋ณด์žฅ์ด ๋”์šฑ ๊ฐ•์กฐ๋˜๊ณ  ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ž์œจ ์ฃผํ–‰ ์ฐจ๋Ÿ‰์˜ ๊ฑฐ๋™ ์ œ์–ด๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ์ž์œจ ์ฃผํ–‰ ์‹œ์Šคํ…œ ๊ด€์ ์—์„œ ์ฐจ๋Ÿ‰์˜ ์•ˆ์ „์„ฑ์„ ์šฐ์„ ์ ์œผ๋กœ ํ™•๋ณดํ•˜๋Š” ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์•ˆํ•œ๋‹ค. ๋˜ํ•œ ์ž์œจ์ฃผํ–‰ ๊ธฐ์ˆ  ๊ฐœ๋ฐœ์€ ๋‹จ์ˆœํ•˜๊ฒŒ ์šด์ „์„ ๋Œ€์ฒดํ•˜๋Š” ๊ธฐ์ˆ ์ด ์•„๋‹ˆ๋ผ, ์ฒจ๋‹จ๊ธฐ์ˆ ์˜ ์ง‘์•ฝ ์ฒด๋กœ์จ ์‚ฐ์—…์ ์œผ๋กœ ๋งค์šฐ ํฐ ํŒŒ๊ธ‰๋ ฅ์„ ๊ฐ€์ง„๋‹ค๊ณ  ์ „๋ง๋œ๋‹ค. ํ˜„์žฌ ์ž์œจ์ฃผํ–‰ ์‹œ์Šคํ…œ์€ ๊ธฐ์กด ์ž๋™์ฐจ ์‚ฐ์—…์˜ ๊ณ ์ „์ ์ธ ํ‹€์—์„œ ํ™•์žฅ๋˜์–ด, ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์˜ ๊ด€์ ์—์„œ ์ฃผ๋„์ ์œผ๋กœ ๊ฐœ๋ฐœ์ด ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ์ž์œจ ์ฃผํ–‰์€ ๋‹ค์–‘ํ•œ ๊ธฐ์ˆ ์˜ ๋ณตํ•ฉ์ ์ธ ๊ฒฐํ•ฉ์œผ๋กœ ๊ตฌ์„ฑ๋˜๊ธฐ ๋•Œ๋ฌธ์—, ํ˜„์žฌ ๊ฐ๊ธฐ ๋‹ค๋ฅธ ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ์—์„œ ๊ฐœ๋ฐœ์ด ์ง„ํ–‰ ์ค‘์ด๋ฉฐ, ์•„์ง ํ‘œ์ค€ํ™”๋˜์–ด ์žˆ์ง€ ์•Š์€ ์‹ค์ •์ด๋‹ค. ๋Œ€๋ถ€๋ถ„ ๊ฐ ๋ชจ๋“ˆ ๋‹จ์œ„์˜ ์ง€์—ฝ์ ์ธ ์„ฑ๋Šฅํ–ฅ์ƒ์„ ์ถ”๊ตฌํ•˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์œผ๋ฉฐ, ๊ตฌ์„ฑ ๋ชจ๋“ˆ ๊ฐ„ ๊ด€๊ณ„๊ฐ€ ๊ณ ๋ ค๋œ ์ „์ฒด ์‹œ์Šคํ…œ ๋‹จ์œ„์˜ ์ ‘๊ทผ๋ฐฉ์‹์€ ๋ฏธํกํ•œ ์‹ค์ •์ด๋‹ค. ์„ธ๋ถ€ ๋ชจ๋“ˆ ๋‹จ์œ„์˜ ์ง€์—ฝ์ ์ธ ์—ฐ๊ตฌ ๊ฐœ๋ฐœ์€ ํ†ตํ•ฉ ์‹œ, ๋ชจ๋“ˆ ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์œผ๋กœ ์ธํ•œ ์˜ํ–ฅ์œผ๋กœ ์‹œ์Šคํ…œ ๊ด€์ ์—์„œ ์ ์ ˆํ•œ ์„ฑ๋Šฅ์„ ํ™•๋ณดํ•˜๊ธฐ ์–ด๋ ค์šธ ์ˆ˜ ์žˆ๋‹ค. ๊ฐ ๋ชจ๋“ˆ์˜ ์„ฑ๋Šฅ๋งŒ์„ ๊ณ ๋ คํ•œ ์ผ๋ฐฉ์ ์ธ ๋ฐฉํ–ฅ์˜ ์—ฐ๊ตฌ๋Š” ํ•œ๊ณ„๊ฐ€ ๋ช…ํ™•ํ•˜๋ฉฐ, ์—ฐ๊ด€๋œ ๋ชจ๋“ˆ๋“ค์˜ ํŠน์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ ๋ฐ˜์˜ํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ž์œจ์ฃผํ–‰ ์ „์ฒด ์‹œ์Šคํ…œ์˜ ๊ด€์ ์—์„œ, ์ฐจ๋Ÿ‰ ์•ˆ์ „์„ ์šฐ์„ ์ ์œผ๋กœ ํ™•๋ณดํ•˜๊ณ  ์ „์ฒด ์„ฑ๋Šฅ์„ ๊ทน๋Œ€ํ™”ํ•˜๋Š” ํšจ๊ณผ์ ์ธ ์ ‘๊ทผ ๋ฐฉ์‹์„ ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆํ•˜๊ณ ์ž ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ž์œจ ์ฃผํ–‰ ์‹œ์Šคํ…œ์˜ ์•ˆ์ •์ ์ด๊ณ  ๋†’์€ ์„ฑ๋Šฅ์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•ด ์ „์ฒด ์‹œ์Šคํ…œ ์ž‘๋™ ์ธก๋ฉด์—์„œ ๊ตฌ์„ฑ๋œ ๋ชจ๋“ˆ ๊ฐ„์˜ ์ƒํ˜ธ ์ž‘์šฉ์„ ๊ณ ๋ คํ•˜์—ฌ ํšจ์œจ์ ์ธ ํ™˜๊ฒฝ ์ธ์‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐœ๋ฐœํ•˜๋Š”๋ฐ ์ค‘์ ์„ ๋‘”๋‹ค. ์‹ค์งˆ์ ์ธ ๊ด€์ ์—์„œ ํšจ๊ณผ์ ์ธ ์ •๋ณด ์ฒ˜๋ฆฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜๊ณ  ์ฐจ๋Ÿ‰ ์•ˆ์ „์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•ด ์ ์‘ํ˜• ๊ด€์‹ฌ ์˜์—ญ (ROI) ๊ธฐ๋ฐ˜ ๊ณ„์‚ฐ ๋ถ€ํ•˜ ๊ด€๋ฆฌ ์ „๋žต์„ ์ œ์•ˆํ•œ๋‹ค. ์ฐจ๋Ÿ‰์˜ ๊ฑฐ๋™ ํŠน์„ฑ, ๋„๋กœ ์„ค๊ณ„ ํ‘œ์ค€, ์ถ”์›” ๋ฐ ์ฐจ์„  ๋ณ€๊ฒฝ๊ณผ ๊ฐ™์€ ์ฃผ๋ณ€ ์ฐจ๋Ÿ‰์˜ ์ฃผํ–‰ ํŠน์„ฑ์ด ์ ์‘ํ˜• ROI ์„ค๊ณ„ ๋ฐ ์ฃผํ–‰ ์ƒํ™ฉ์— ๋”ฐ๋ฅธ ์˜์—ญ ํ™•์žฅ์— ๋ฐ˜์˜๋œ๋‹ค. ๋˜ํ•œ, ์ž์œจ ์ฃผํ–‰ ์ฐจ๋Ÿ‰์˜ ์‹ค์งˆ์ ์ธ ์•ˆ์ „์„ ๋ณด์žฅํ•˜๊ธฐ ์œ„ํ•ด ROI ์„ค๊ณ„์—์„œ ์ž์œจ ์ฃผํ–‰ ์ œ์–ด๋ฅผ ์œ„ํ•œ ๊ฑฐ๋™ ๊ณ„ํš ๊ฒฐ๊ณผ๊ฐ€ ๊ณ ๋ ค๋œ๋‹ค. ๋ณด๋‹ค ๋„“์€ ์ฃผ๋ณ€ ์˜์—ญ์— ๋Œ€ํ•œ ํ™˜๊ฒฝ ์ •๋ณด๋ฅผ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•ด ๋ผ์ด๋‹ค ๋ฐ์ดํ„ฐ๋Š” ์„ค๊ณ„๋œ ROI๋ณ„๋กœ ๋ถ„๋ฅ˜๋˜๋ฉฐ, ์˜์—ญ๋ณ„ ์ค‘์š”๋„์— ๋”ฐ๋ผ ์—ฐ์‚ฐ ๊ณผ์ •์ด ๋ถ„๋ฆฌ๋˜์–ด ์ˆ˜ํ–‰๋œ๋‹ค. ๋ชฉํ‘œ ์‹œ์Šคํ…œ์„ ๊ตฌ์„ฑํ•˜๋Š” ๋ชจ๋“ˆ ๋ณ„ ์—ฐ์‚ฐ ์‹œ๊ฐ„์ด ์ธก์ •๋œ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜์œผ๋กœ ํ†ต๊ณ„์ ์œผ๋กœ ๋ถ„์„๋œ๋‹ค. ์šด์ „์ž์˜ ๋ฐ˜์‘ ์‹œ๊ฐ„, ์‚ฐ์—… ํ‘œ์ค€, ๋Œ€์ƒ ํ•˜๋“œ์›จ์–ด ์‚ฌ์–‘ ๋ฐ ์„ผ์„œ ์„ฑ๋Šฅ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ฒฐ์ •๋œ ์‹œ์Šคํ…œ ์„ฑ๋Šฅ ์กฐ๊ฑด์„ ๊ณ ๋ คํ•˜์—ฌ, ์•ˆ์ „์„ฑ์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•œ ์ž์œจ ์ฃผํ–‰ ์‹œ์Šคํ…œ์˜ ์ ์ ˆํ•œ ์ƒ˜ํ”Œ๋ง ์ฃผ๊ธฐ๊ฐ€ ์ •์˜๋œ๋‹ค. ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๋‹ค์ค‘ ์„ ํ˜• ํšŒ๊ท€ ๋ถ„์„์€ ์ธ์‹ ๋ชจ๋“ˆ์„ ๊ตฌ์„ฑํ•˜๋Š” ํ•จ์ˆ˜ ๋ณ„ ์‹คํ–‰ ์‹œ๊ฐ„์„ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•ด ์ ์šฉ๋˜๋ฉฐ, ์•ˆ์ •์ ์ธ ์‹ค์‹œ๊ฐ„ ์„ฑ๋Šฅ์„ ๋ณด์žฅํ•˜๊ธฐ ์œ„ํ•ด ์ ์‘ํ˜• ROI๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ž์œจ ์ฃผํ–‰ ์•ˆ์ „์— ํ•„์š”ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ์„ ํƒ์ ์œผ๋กœ ๋ถ„๋ฅ˜ํ•˜์—ฌ ์—ฐ์‚ฐ ๋ถ€ํ•˜๊ฐ€ ๊ฐ์ถ•๋œ๋‹ค. ์—ฐ์‚ฐ ๋ถ€ํ•˜ ํ‰๊ฐ€ ๊ด€๋ฆฌ์—์„œ ํ™˜๊ฒฝ ์ธ์ง€ ๋ชจ๋“ˆ๊ณผ ์ „์ฒด ์‹œ์Šคํ…œ์˜ ์—ฐ์‚ฐ ๋ถ€ํ•˜๊ฐ€ ๋Œ€์ƒ ํ™˜๊ฒฝ์—์„œ์˜ ์ ์ ˆ์„ฑ์„ ํ‰๊ฐ€ํ•˜๊ณ , ์—ฐ์‚ฐ ๋ถ€ํ•˜ ๊ด€๋ฆฌ์— ๋ฌธ์ œ๊ฐ€ ์žˆ์„ ๋•Œ ์ž์œจ ์ฃผํ–‰ ์ฐจ๋Ÿ‰์˜ ๊ฑฐ๋™์„ ์ œํ•œํ•˜์—ฌ ์‹œ์Šคํ…œ ์•ˆ์ •์„ฑ์„ ์œ ์ง€ํ•จ์œผ๋กœ์จ ์ฐจ๋Ÿ‰ ์•ˆ์ „์„ฑ์„ ํ™•๋ณดํ•œ๋‹ค. ์ œ์•ˆ๋œ ์ž์œจ์ฃผํ–‰ ์ธ์ง€ ์ „๋žต ๋ฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์„ฑ๋Šฅ์€ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ ์‹ค์ฐจ ์‹คํ—˜์„ ํ†ตํ•ด ๊ฒ€์ฆ๋˜์—ˆ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ ํ™˜๊ฒฝ ์ธ์‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ž์œจ ์ฃผํ–‰ ์‹œ์Šคํ…œ์„ ๊ตฌ์„ฑํ•˜๋Š” ๋ชจ๋“ˆ ๊ฐ„์˜ ์ƒํ˜ธ ์ž‘์šฉ์„ ๊ณ ๋ คํ•˜์—ฌ ๋„์‹ฌ ๋„๋กœ ํ™˜๊ฒฝ์—์„œ ์ž์œจ ์ฃผํ–‰ ์ฐจ๋Ÿ‰์˜ ์•ˆ์ „์„ฑ๊ณผ ์‹œ์Šคํ…œ์˜ ์•ˆ์ •์ ์ธ ์„ฑ๋Šฅ์„ ๋ณด์žฅํ•  ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค.Since annually 1.2 million people die from car crashes worldwide, discussions about fundamental preventive measures for traffic accidents are taking place. According to the statistical survey, 94 percent of all traffic accidents are caused by human error. From the perspective of securing road safety, automated driving technology became interesting as a way to solve this serious problem, and its commercialization was considered through a step-by-step application through research and development. Major carmakers already have developed and commercialized advanced driver assistance systems (ADAS), such as lane keeping assistance system (LKAS), adaptive cruise control (ACC), parking assistance system (PAS), automated emergency braking (AEB), and so on. Furthermore, partially automated driving systems are being installed in vehicles and released by carmakers. Audi AI Traffic Jam Pilot (Audi), Autopilot (Tesla), Distronic Plus (Mercedes-Benz), Highway Driving Assist (Hyundai Motor Company), and Driving Assistant Plus (BMW) are typical released examples of the partially automated driving system. These released partially automated driving systems are still must be accompanied by driver attention. Nevertheless, it is proving to be effective in significantly improving safety. In recent years, several automated driving accidents have occurred, and the frequency is rapidly increasing and attracting social attention. Since vehicle accidents are directly related to human casualty, accidents of automated vehicles cause social insecurity by causing a decrease in the reliability of automated driving technology. Due to recent automated driving-related accidents, the safety of the automated vehicle has been emphasized more. Therefore, in this study, we propose an approach to secure vehicle safety in terms of the entire system in consideration of the behavior control of the automated driving vehicle. In addition, the development of automated driving is not merely a replacement technology for driving, but it is expected to have an industrial assembly as integration of high technology. Currently, automated driving systems have been extended from the conventional framework of the existing automotive industry, and are being developed in various fields. Since automated driving is composed of a complex combination of various technologies, development is currently underway in various conditions and has not been standardized yet. Most developments tend to pursue local performance improvement in each module unit, and the overall system unit approaches considering the relationship between component modules is insufficient. Local research and development at the submodule level can be challenging to achieve adequate performance from a system-level due to the effects of module interaction in terms of system integration perspective. The one-way approach that considers only the performance of each module has its limitations. To overcome this problem, it is necessary to consider the characteristics of the modules involved. This dissertation focuses on developing an efficient environment perception algorithm by considering the interaction between configured modules in terms of entire system operation to secure the stable and high performance of an automated driving system. In order to perform effective information processing and secure vehicle safety from a practical perspective, we propose an adaptive ROI based computational load management strategy. The motion characteristics of the subject vehicle, road design standards, and driving tasks of the surrounding vehicles, such as overtaking, and lane change, are reflected in the design of adaptive ROI, and the expansion of the area according to the driving task is considered. Additionally, motion planning results for automated driving are considered in the ROI design in order to guarantee the practical safety of the automated vehicle. In order to secure reasonable and appropriate environment information for the wider areas, lidar sensor data is classified by the designed ROI, and separated processing is conducted according to area importance. Based on the driving data, the calculation time of each module constituting the target system is statistically analyzed. In consideration of the system performance constraint determined by using human reaction time and industry standards, target hardware specification and the performance of sensor, the appropriate sampling time for automated driving system is defined to enhance safety. The data-based multiple linear regression is applied to predict the computation time by each function constituting perception module, and the computational load reduction is applied sequentially by selecting the data essential for automated driving safety based on adaptive ROI to secure the stable real-time execution performance of the system. In computational load assessment, it evaluates whether the computational load of the environmental perception module and entire system are appropriate and restricts the vehicle behavior when there is a problem in the computational load management to ensure vehicle safety by maintaining system stability. The performance of the proposed strategy and algorithms is evaluated through driving data-based simulation and actual vehicle tests. Test results show that the proposed environment recognition algorithm, which considers the interactions between the modules that make up the automated driving system, guarantees the safety of automated vehicle and reliable performance of system in an urban environment scenario.Chapter 1 Introduction 1 1.1. Background and Motivation 1 1.2. Previous Researches 6 1.3. Thesis Objectives 11 1.4. Thesis Outline 13 Chapter 2 Overall Architecture 14 2.1. Automated Driving Architecture 14 2.2. Test Vehicle Configuration 19 Chapter 3 Design of Adaptive ROI and Processing 21 3.1. ROI Definition 25 3.1.1. ROI Design for Normal Driving Condition 30 3.1.2. ROI Design for Lane Change 50 3.1.3. ROI Design for Intersection 56 3.2. Data Processing based on Adaptive ROI 62 3.2.1. Point Cloud Categorization by Adaptive ROI 63 3.2.2. Separated Voxelization 66 3.2.3. Separated Clustering 70 Chapter 4 Environment Perception Algorithm for Automated Driving 75 4.1. Time Delay Compensation of Environment Sensor 77 4.1.1. Algorithm Structure of Time Delay Estimation and Compensation 78 4.1.2. Time Delay Compensation Algorithm 79 4.1.3. Analysis of Processing Delay 84 4.1.4. Test Data based Open-loop Simulation 91 4.2. Environment Representation 96 4.2.1. Static Obstacle Map Construction 98 4.2.2. Lane and Road Boundary Detection 100 4.3. Multiple Object State Estimation and Tracking based on Geometric Model-Free Approach 107 4.3.1. Prediction of Geometric Model-Free Approach 109 4.3.2. Track Management 111 4.3.3. Measurement Update 112 4.3.4. Performance Evaluation via vehicle test 114 Chapter 5 Computational Load Management 117 5.1. Processing Time Analysis of Driving Data 121 5.2. Processing Time Estimation based on Multiple Linear Regression 128 5.2.1. Clustering Processing Time Estimation 129 5.2.2. Multi Object Tracking (MOT) Processing Time Estimation 138 5.2.3. Validation through Data-based Simulation 146 5.3. Computational Load Management 149 5.3.1. Sequential Processing to Computation Load Reduction 151 5.3.2. Restriction of Driving Control 154 5.3.3. Validation through Data-based Simulation 159 Chapter 6 Vehicle Tests based Performance Evaluation 163 6.1. Test-data based Simulation 164 6.2. Vehicle Tests: Urban Automated Driving 171 6.2.1. Test Configuration 171 6.2.2. Motion Planning and Vehicle Control 172 6.2.3. Vehicle Tests Results 174 Chapter 7 Conclusions and Future Works 184 Bibliography 188 Abstract in Korean 200Docto

    Vision-based localization methods under GPS-denied conditions

    Full text link
    This paper reviews vision-based localization methods in GPS-denied environments and classifies the mainstream methods into Relative Vision Localization (RVL) and Absolute Vision Localization (AVL). For RVL, we discuss the broad application of optical flow in feature extraction-based Visual Odometry (VO) solutions and introduce advanced optical flow estimation methods. For AVL, we review recent advances in Visual Simultaneous Localization and Mapping (VSLAM) techniques, from optimization-based methods to Extended Kalman Filter (EKF) based methods. We also introduce the application of offline map registration and lane vision detection schemes to achieve Absolute Visual Localization. This paper compares the performance and applications of mainstream methods for visual localization and provides suggestions for future studies.Comment: 32 pages, 15 figure

    Event-Based Obstacle Detection with Commercial Lidar

    Get PDF
    Computerized obstacle detection for moving vehicles is becoming more important as vehicle manufacturers make their systems more autonomous and safe. However, obstacle detection must operate quickly in dynamic environments such as driving at highway speeds. A unique obstacle detection system using 3D changes in the environment is proposed. Furthermore, these 3D changes are shown to contain sufficient information for avoiding obstacles. To make the system easy to integrate onto a vehicle, additional processing is implemented to remove unnecessary dependencies. This system provides a method for obstacle detection that breaks away from typical systems to be more efficient

    Performance of Sensor Fusion for Vehicular Applications

    Get PDF
    Sensor fusion is a key system in Advanced Driver Assistance Systems, ADAS. The perfor-mance of the sensor fusion depends on many factors such as the sensors used, the kinematicmodel used in the Extended Kalman Filter, EKF, the motion of the vehicles, the type ofroad, the density of vehicles, and the gating methods. The interactions between parametersand the extent to which individual parameters contribute to the overall accuracy of a sensorfusion system can be difficult to assess.In this study, a full-factorial experimental evaluation of a sensor fusion system basedon a real vehicle was performed. The experimental results for different driving scenariosand parameters are discussed and the factors that make the most impact are identified.The performance of sensor fusion depends on many factors such as the sensors used, thekinematic model used in the Extended Kalman Filter (EKF) motion of the vehicles, type ofroad, density of vehicles, and gating methods.This study identified that the distance between the vehicles has the largest impact on theestimation error because the vision sensor performs poorly with increased distance. In addi-tion, it was identified that the kinematic models had no significant impact on the estimation.Last but not least, the ellipsoid gates performed better than rectangular gates.In addition, we propose a new gating algorithm called an angular gate. This algorithmis based on the observation that the data for each target lies in the direction of that target.Therefore, the angle and the range can be used for setting up a two-level gating approachthat is both more intuitive and computationally faster than ellipsoid gates. The angulargates can achieve a speedup factor of up to 2.27 compared to ellipsoid gates.Furthermore, we provide time complexity analysis of angular gates, ellipsoid gates, andrectangular gates demonstrating the theoretical reasons why angular gates perform better.Last, we evaluated the performance of the Munkres algorithm using a full factorial designand identified that narrower gates can speedup the running time of the Munkres algorithmand, surprisingly, even improve the RMSE in some cases.The low target maneuvering index of vehicular systems was identified as the reason whythe kinematic models do not have an impact on the estimation. This finding supports the useof simpler and computationally inexpensive filters instead of complex Interacting MultipleModel filters. The angular gates also improve the computational efficiency of the overallsensor fusion system making them suitable for vehicular application as well as for embeddedsystems and robotics

    Advances in Automated Driving Systems

    Get PDF
    Electrification, automation of vehicle control, digitalization and new mobility are the mega-trends in automotive engineering, and they are strongly connected. While many demonstrations for highly automated vehicles have been made worldwide, many challenges remain in bringing automated vehicles to the market for private and commercial use. The main challenges are as follows: reliable machine perception; accepted standards for vehicle-type approval and homologation; verification and validation of the functional safety, especially at SAE level 3+ systems; legal and ethical implications; acceptance of vehicle automation by occupants and society; interaction between automated and human-controlled vehicles in mixed traffic; humanโ€“machine interaction and usability; manipulation, misuse and cyber-security; the system costs of hard- and software and development efforts. This Special Issue was prepared in the years 2021 and 2022 and includes 15 papers with original research related to recent advances in the aforementioned challenges. The topics of this Special Issue cover: Machine perception for SAE L3+ driving automation; Trajectory planning and decision-making in complex traffic situations; X-by-Wire system components; Verification and validation of SAE L3+ systems; Misuse, manipulation and cybersecurity; Humanโ€“machine interactions, driver monitoring and driver-intention recognition; Road infrastructure measures for the introduction of SAE L3+ systems; Solutions for interactions between human- and machine-controlled vehicles in mixed traffic

    Design and validation of decision and control systems in automated driving

    Get PDF
    xxvi, 148 p.En la รบltima dรฉcada ha surgido una tendencia creciente hacia la automatizaciรณn de los vehรญculos, generando un cambio significativo en la movilidad, que afectarรก profundamente el modo de vida de las personas, la logรญstica de mercancรญas y otros sectores dependientes del transporte. En el desarrollo de la conducciรณn automatizada en entornos estructurados, la seguridad y el confort, como parte de las nuevas funcionalidades de la conducciรณn, aรบn no se describen de forma estandarizada. Dado que los mรฉtodos de prueba utilizan cada vez mรกs las tรฉcnicas de simulaciรณn, los desarrollos existentes deben adaptarse a este proceso. Por ejemplo, dado que las tecnologรญas de seguimiento de trayectorias son habilitadores esenciales, se deben aplicar verificaciones exhaustivas en aplicaciones relacionadas como el control de movimiento del vehรญculo y la estimaciรณn de parรกmetros. Ademรกs, las tecnologรญas en el vehรญculo deben ser lo suficientemente robustas para cumplir con los requisitos de seguridad, mejorando la redundancia y respaldar una operaciรณn a prueba de fallos. Considerando las premisas mencionadas, esta Tesis Doctoral tiene como objetivo el diseรฑo y la implementaciรณn de un marco para lograr Sistemas de Conducciรณn Automatizados (ADS) considerando aspectos cruciales, como la ejecuciรณn en tiempo real, la robustez, el rango operativo y el ajuste sencillo de parรกmetros. Para desarrollar las aportaciones relacionadas con este trabajo, se lleva a cabo un estudio del estado del arte actual en tecnologรญas de alta automatizaciรณn de conducciรณn. Luego, se propone un mรฉtodo de dos pasos que aborda la validaciรณn de ambos modelos de vehรญculos de simulaciรณn y ADS. Se introducen nuevas formulaciones predictivas basadas en modelos para mejorar la seguridad y el confort en el proceso de seguimiento de trayectorias. Por รบltimo, se evalรบan escenarios de mal funcionamiento para mejorar la seguridad en entornos urbanos, proponiendo una estrategia alternativa de estimaciรณn de posicionamiento para minimizar las condiciones de riesgo
    • โ€ฆ
    corecore