1,904 research outputs found

    A new method for nonlinear circuit simulation in time domain: NOWE

    Get PDF
    Cataloged from PDF version of article.A new method for the time-domain solution of general nonlinear dynamic circuits is presented. In this method, the solutions of the state variables are computed by using their time derivatives up to some order at the initial time instant. The computation of the higher order derivatiws b equivalent to solving the same linear circuit for various sets of dc excitations. Once the time derivatives of the state variables are obtained, an approximation to the solution can be found as a polynomial rational function of time. The time derivatives of the approximation at the initial time instant are matched to those of the exact solution. This method is promising in terms of execution speed, since it can achieve the same accuracy as the trapezoidal approximation with much smaller number of matrix inversions

    Nano-Sim: A Step Wise Equivalent Conductance based Statistical Simulator for Nanotechnology Circuit Design

    Full text link
    New nanotechnology based devices are replacing CMOS devices to overcome CMOS technology's scaling limitations. However, many such devices exhibit non-monotonic I-V characteristics and uncertain properties which lead to the negative differential resistance (NDR) problem and the chaotic performance. This paper proposes a new circuit simulation approach that can effectively simulate nanotechnology devices with uncertain input sources and negative differential resistance (NDR) problem. The experimental results show a 20-30 times speedup comparing with existing simulators.Comment: Submitted on behalf of EDAA (http://www.edaa.com/

    Interpolation-based parameterized model order reduction of delayed systems

    Get PDF
    Three-dimensional electromagnetic methods are fundamental tools for the analysis and design of high-speed systems. These methods often generate large systems of equations, and model order reduction (MOR) methods are used to reduce such a high complexity. When the geometric dimensions become electrically large or signal waveform rise times decrease, time delays must be included in the modeling. Design space optimization and exploration are usually performed during a typical design process that consequently requires repeated simulations for different design parameter values. Efficient performing of these design activities calls for parameterized model order reduction (PMOR) methods, which are able to reduce large systems of equations with respect to frequency and other design parameters of the circuit, such as layout or substrate features. We propose a novel PMOR method for neutral delayed differential systems, which is based on an efficient and reliable combination of univariate model order reduction methods, a procedure to find scaling and frequency shifting coefficients and positive interpolation schemes. The proposed scaling and frequency shifting coefficients enhance and improve the modeling capability of standard positive interpolation schemes and allow accurate modeling of highly dynamic systems with a limited amount of initial univariate models in the design space. The proposed method is able to provide parameterized reduced order models passive by construction over the design space of interest. Pertinent numerical examples validate the proposed PMOR approach

    Custom Integrated Circuits

    Get PDF
    Contains reports on four research projects.U.S. Air Force - Office of Scientific Research (Contract F49620-81-C-0054)U.S. Air Force - Office of Scientific Research (Contract F49620-84-C-0004)National Science Foundation (Grant ECS81-18160)National Science Foundation (Grant ECS83-10941

    Repeater insertion to minimise delay in coupled interconnects.

    Get PDF
    Signalling over long interconnect is a dominant issue in electronic chip design in current technologies, with the device sizes getting smaller and smaller and the circuits becoming ever larger. Repeater insertion is a well established technique to minimise the propagation delay over long resistive interconnect. In deep sub-micron technologies, as the wires are spaced closer and closer together and signal rise and fall times go into the sub-nano second region, the coupling between interconnects assumes great significance. The resulting crosstalk has implications on the data throughput and on signal integrity. Depending on the data correlation on the coupled lines, the delay can either decrease or increase. In this paper we attempt to quantify the effect of worst-case capacitive crosstalk in parallel buses and look at how it affects repeater insertion in particular. We develop analytic expressions for the delay, buffer size and number that are suitable in a-priori timing analyses and signal integrity estimations. All equations are checked against a dynamic circuit simulator (SPECTRE

    Custom Integrated Circuits

    Get PDF
    Contains reports on ten research projects.Analog Devices, Inc.IBM CorporationNational Science Foundation/Defense Advanced Research Projects Agency Grant MIP 88-14612Analog Devices Career Development Assistant ProfessorshipU.S. Navy - Office of Naval Research Contract N0014-87-K-0825AT&TDigital Equipment CorporationNational Science Foundation Grant MIP 88-5876

    Circuit simulation using distributed waveform relaxation techniques

    Get PDF
    Simulation plays an important role in the design of integrated circuits. Due to high costs and large delays involved in their fabrication, simulation is commonly used to verify functionality and to predict performance before fabrication. This thesis describes analysis, implementation and performance evaluation of a distributed memory parallel waveform relaxation technique for the electrical circuit simulation of MOS VLSI circuits. The waveform relaxation technique exhibits inherent parallelism due to the partitioning of a circuit into a number of sub-circuits. These subcircuits can be concurrently simulated on parallel processors. Different forms of parallelism in the direct method and the waveform relaxation technique are studied. An analysis of single queue and distributed queue approaches to implement parallel waveform relaxation on distributed memory machines is performed and their performance implications are studied. The distributed queue approach selected for exploiting the coarse grain parallelism across sub-circuits is described. Parallel waveform relaxation programs based on Gauss-Seidel and Gauss-Jacobi techniques are implemented using a network of eight Transputers. Static and dynamic load balancing strategies are studied. A dynamic load balancing algorithm is developed and implemented. Results of parallel implementation are analyzed to identify sources of bottlenecks. This thesis has demonstrated the applicability of a low cost distributed memory multi-computer system for simulation of MOS VLSI circuits. Speed-up measurements prove that a five times improvement in the speed of calculations can be achieved using a full window parallel Gauss-Jacobi waveform relaxation algorithm. Analysis of overheads shows that load imbalance is the major source of overhead and that the fraction of the computation which must be performed sequentially is very low. Communication overhead depends on the nature of the parallel architecture and the design of communication mechanisms. The run-time environment (parallel processing framework) developed in this research exploits features of the Transputer architecture to reduce the effect of the communication overhead by effectively overlapping computation with communications, and running communications processes at a higher priority. This research will contribute to the development of low cost, high performance workstations for computer-aided design and analysis of VLSI circuits

    A design tool for high-resolution high-frequency cascade continuous- time Σ∆ modulators

    Get PDF
    Event: Microtechnologies for the New Millennium, 2007, Maspalomas, Gran Canaria, SpainThis paper introduces a CAD methodology to assist the de signer in the implementation of continuous-time (CT) cas- cade Σ∆ modulators. The salient features of this methodology ar e: (a) flexible behavioral modeling for optimum accuracy- efficiency trade-offs at different stages of the top-down synthesis process; (b) direct synthesis in the continuous-time domain for minimum circuit complexity and sensitivity; a nd (c) mixed knowledge-based and optimization-based architec- tural exploration and specification transmission for enhanced circuit performance. The applicability of this methodology will be illustrated via the design of a 12 bit 20 MHz CT Σ∆ modulator in a 1.2V 130nm CMOS technology.Ministerio de Ciencia y Educación TEC2004-01752/MICMinisterio de Industria, Turismo y Comercio FIT-330100-2006-134 SPIRIT Projec
    • 

    corecore