353 research outputs found

    Modern drowsiness detection techniques: a review

    Get PDF
    According to recent statistics, drowsiness, rather than alcohol, is now responsible for one-quarter of all automobile accidents. As a result, many monitoring systems have been created to reduce and prevent such accidents. However, despite the huge amount of state-of-the-art drowsiness detection systems, it is not clear which one is the most appropriate. The following points will be discussed in this paper: Initial consideration should be given to the many sorts of existing supervised detecting techniques that are now in use and grouped into four types of categories (behavioral, physiological, automobile and hybrid), Second, the supervised machine learning classifiers that are used for drowsiness detection will be described, followed by a discussion of the advantages and disadvantages of each technique that has been evaluated, and lastly the recommendation of a new strategy for detecting drowsiness

    Monitoring fatigue and drowsiness in motor vehicle occupants using electrocardiogram and heart rate - A systematic review

    Get PDF
    Introdução: A fadiga é um estado complexo que pode resultar em diminuição da vigilância, frequentemente acompanhada de sonolência. A fadiga durante a condução contribui significativamente para acidentes de trânsito em todo o mundo, destacando-se a necessidade de técnicas de monitorização eficazes. Existem várias tecnologias para aumentar a segurança do condutor e reduzir os riscos de acidentes, como sistemas de deteção de fadiga que podem alertar os condutores à medida que a sonolência se instala. Em particular, a análise dos padrões de frequência cardíaca pode oferecer informações valiosas sobre a condição fisiológica e o nível de vigilância do condutor, permitindo-lhe compreender os seus níveis de fadiga. Esta revisão tem como objetivo estabelecer o estado atual das estratégias de monitorização para ocupantes de veículos, com foco específico na avaliação da fadiga pela frequência cardíaca e variabilidade da frequência cardíaca. Métodos: Realizamos uma pesquisa sistemática da literatura nas bases de dados Web of Science, SCOPUS e Pubmed, utilizando os termos veículo, condutor, monitoração fisiológica, fadiga, sono, eletrocardiograma, frequência cardíaca e variabilidade da frequência cardíaca. Examinamos artigos publicados entre 1 de janeiro de 2018 e 31 de janeiro de 2023. Resultados: Um total de 371 artigos foram identificados, dos quais 71 foram incluídos neste estudo. Entre os artigos incluídos, 57 utilizam o eletrocardiograma (ECG) como sinal adquirido para medir a frequência cardíaca, sendo que a maioria das leituras de ECG foi obtida através de sensores de contacto (n=41), seguidos por sensores vestíveis não invasivos (n=11). Relativamente à validação, 23 artigos não mencionam qualquer tipo de validação, enquanto a maioria se baseia em avaliações subjetivas de fadiga relatadas pelos próprios participantes (n=27) e avaliações feitas por observadores com base em vídeos (n=11). Dos artigos incluídos, apenas 14 englobam um sistema de estimativa de fadiga e sonolência. Alguns relatam um desempenho satisfatórios, no entanto, o tamanho reduzido da amostra limita a abrangência de quaisquer conclusões. Conclusão: Esta revisão destaca o potencial da análise da frequência cardíaca e da instrumentação não invasiva para a monitorização contínua do estado do condutor e deteção de sonolência. Uma das principais questões é a falta de métodos suficientes de validação e estimativa para a fadiga, o que contribui para a insuficiência dos métodos na criação de sistemas de alarme proativos. Esta área apresenta grandes perspetivas, mas ainda está longe de ser implementada de forma fiável.Background: Fatigue is a complex state that can result in decreased alertness, often accompanied by drowsiness. Driving fatigue has become a significant contributor to traffic accidents globally, highlighting the need for effective monitoring techniques. Various technologies exist to enhance driver safety and minimize accident risks, such as fatigue detection systems that can alert drivers as drowsiness sets in. In particular, measuring heart rate patterns may offer valuable insights into the occupant's physiological condition and level of alertness, and may allow them to understand their fatigue levels. This review aims to establish the current state of the art of monitoring strategies for vehicle occupants, specifically focusing on fatigue assessed by heart rate and heart rate variability. Methods: We performed a systematic literature search in the databases of Web Of Science, SCOPUS and Pubmed, using the terms vehicle, driver, physiologic monitoring, fatigue, sleep, electrocardiogram, heart rate and heart rate variability. We examine articles published between 1st of january 2018 and 31st of January 2023. Results: A total of 371 papers were identified from which 71 articles were included in this study. Among the included papers, 57 utilized electrocardiogram (ECG) as the acquired signal for heart rate (HR) measures, with most ECG readings obtained through contact sensors (n=41), followed by non-intrusive wearable sensors (n=11). Regarding validation, 23 papers do not report validation, while the majority rely on subjective self-reported fatigue ratings (n=27) and video-based observer ratings(n=11). From the included papers, only 14 comprise a fatigue and drowsiness estimation system. Some report acceptable performances, but reduced sample size limits the reach of any conclusions. Conclusions: This review highlights the potential of HR analysis and non-intrusive instrumentation for continuous monitoring of driver's status and detecting sleepiness. One major issue is the lack of sufficient validation and estimation methods for fatigue, contributing to the insufficiency of methods in providing proactive alarm systems. This area shows great promise but is still far from being reliably implemented

    A Light on Physiological Sensors for Efficient Driver Drowsiness Detection System

    Get PDF
    International audienceThe significant advance in bio-sensor technologies hold promise to monitor human physiologicalsignals in real time. In the context of public safety, such technology knows notable research investigations toobjectively detect early stage of driver drowsiness that impairs driver performance under various conditions.Seeking for low-cost, compact yet reliable sensing technology that can provide a solution to drowsy stateproblem is challenging. While some enduring solutions have been available as prototypes for a while, many ofthese technologies are now in the development, validation testing, or even commercialization stages. Thecontribution of this paper is to assess current progress in the development of bio-sensors based driver drowsinessdetection technologies and study their fundamental specifications to achieve accuracy requirements. Existingmarket and research products are then ranked following the discussed specifications. The finding of this work isto provide a methodology to facilitate making the appropriate hardware choice to implement efficient yet lowcostdrowsiness detection system using existing market physiological based sensors

    Physiological-based Driver Monitoring Systems: A Scoping Review

    Get PDF
    A physiological-based driver monitoring system (DMS) has attracted research interest and has great potential for providing more accurate and reliable monitoring of the driver’s state during a driving experience. Many driving monitoring systems are driver behavior-based or vehicle-based. When these non-physiological based DMS are coupled with physiological-based data analysis from electroencephalography (EEG), electrooculography (EOG), electrocardiography (ECG), and electromyography (EMG), the physical and emotional state of the driver may also be assessed. Drivers’ wellness can also be monitored, and hence, traffic collisions can be avoided. This paper highlights work that has been published in the past five years related to physiological-based DMS. Specifically, we focused on the physiological indicators applied in DMS design and development. Work utilizing key physiological indicators related to driver identification, driver alertness, driver drowsiness, driver fatigue, and drunk driver is identified and described based on the PRISMA Extension for Scoping Reviews (PRISMA-Sc) Framework. The relationship between selected papers is visualized using keyword co-occurrence. Findings were presented using a narrative review approach based on classifications of DMS. Finally, the challenges of physiological-based DMS are highlighted in the conclusion. Doi: 10.28991/CEJ-2022-08-12-020 Full Text: PD

    Fatigue analysis and design of a motorcycle online driver measurement tool using real-time sensors

    Get PDF
    Work fatigue is an important aspect and is very influential in determining the level of accidents, especially motorbike accidents. According to WHO, almost 30% of all deaths due to road accidents involve two- and three-wheel­ed motorized vehicles, such as motorbikes, mopeds, scooters and electric bicycles (e-bikes), and the number continues to increase. Motor­cycles dominate road deaths in many low- and middle-income countries, where nine out of ten traffic accident deaths occur among motorcyclists, as in Indonesia. However, until now, in Indonesia, there has been no monitor­ing system capable of identifying fatigue in motorbike drivers in the transportation sector. This research aims to determine fatigue patterns based on driver working hours and create a sensor system to monitor fatigue measurements in real-time to reduce the number of accidents. The research began with processing questionnaire data with Pearson correlation, which showed a close relationship between driver fatigue and driving time and a close relationship between fatigue and increased heart rate and sweating levels. From calibration tests with an error of 3% and direct measurements of working conditions, it was found that two-wheeled vehicle driver fatigue occurs after 2-3 hours of work. With a measurement system using the Box Whiskers analysis method, respondents' working conditions can also be de­ter­mined, which are divided into 4 zones, namely zone 1 (initial condition or good condition), zone 2 a declining condition, zone 3 a tired condition and zone 4 is a resting condition. Hopefully, this research will identify fati­gue zones correctly and reduce the number of accidents because it can iden­tify tired drivers so they do not have to force themselves to continue working and driving their motorbikes. As a conclusion from this research, a measure­ment system using two sensors, such as ECG and GSR can identify work fatigue zones well and is expected to reduce the number of accidents due to work fatigue.Pentingnya aspek identifikasi kondisi kelelahan kerja sangat mempengaruhi tingkat kecelakaan khususnya pada kecelakaan sepeda motor. Namun hingga saat ini di Indonesia belum ada sistem pemantauan yang mampu mengidentifikasi kelelahan pengemudi kendaraan sepeda motor di sektor transportasi. Tujuan dari penelitian ini adalah untuk mengetahui pola kelelahan berdasarkan jam kerja pengemudi dan membuat sistem sensor untuk memantau pengukuran kelelahan secara real-time untuk mengurangi angka kecelakaan. Hasil penelitian dari pengolahan data kuesioner dengan korelasi Pearson menunjukkan adanya hubungan yang erat, antara kelelahan dengan lama berkendara dan kelelahan yang erat kaitannya dengan peningkatan denyut nadi dan berkeringat. Dari pengujian kalibrasi dengan error 3% dan pengukuran langsung kondisi kerja, diperoleh kelelahan yang terjadi setelah 2-3 jam kerja. Dengan sistem pengukuran menggunakan metode analisa Box Whiskers ini juga dapat diketahui kondisi kerja responden yang terbagi menjadi 4 zona yaitu zona 1 (kondisi awal atau kondisi fit), zona 2 kondisi menurun, zona 3 kondisi lelah dan zona olah raga. 4 keadaan istirahat. Dari penelitian ini diharapkan dapat mengidentifikasi zona kelelahan dengan tepat dan dapat menurunkan angka kecelakaan karena dapat mengidentifikasi pengemudi yang kelelahan sehingga tidak memaksakan diri untuk terus bekerja dan mengemudikan sepeda motornya. Sebagai kesimpulan dari penelitian ini, sistem pengukuran menggunakan dua sensor seperti ECG dan GSR dapat mengidentifikasi zona kelelahan dengan baik dan diharapkan dapat mengurangi angka kecelakaan akibat kelelahan

    Advances in Automated Driving Systems

    Get PDF
    Electrification, automation of vehicle control, digitalization and new mobility are the mega-trends in automotive engineering, and they are strongly connected. While many demonstrations for highly automated vehicles have been made worldwide, many challenges remain in bringing automated vehicles to the market for private and commercial use. The main challenges are as follows: reliable machine perception; accepted standards for vehicle-type approval and homologation; verification and validation of the functional safety, especially at SAE level 3+ systems; legal and ethical implications; acceptance of vehicle automation by occupants and society; interaction between automated and human-controlled vehicles in mixed traffic; human–machine interaction and usability; manipulation, misuse and cyber-security; the system costs of hard- and software and development efforts. This Special Issue was prepared in the years 2021 and 2022 and includes 15 papers with original research related to recent advances in the aforementioned challenges. The topics of this Special Issue cover: Machine perception for SAE L3+ driving automation; Trajectory planning and decision-making in complex traffic situations; X-by-Wire system components; Verification and validation of SAE L3+ systems; Misuse, manipulation and cybersecurity; Human–machine interactions, driver monitoring and driver-intention recognition; Road infrastructure measures for the introduction of SAE L3+ systems; Solutions for interactions between human- and machine-controlled vehicles in mixed traffic

    Learning multimodal representations for drowsiness detection

    Get PDF

    SleepyWheels: An Ensemble Model for Drowsiness Detection leading to Accident Prevention

    Full text link
    Around 40 percent of accidents related to driving on highways in India occur due to the driver falling asleep behind the steering wheel. Several types of research are ongoing to detect driver drowsiness but they suffer from the complexity and cost of the models. In this paper, SleepyWheels a revolutionary method that uses a lightweight neural network in conjunction with facial landmark identification is proposed to identify driver fatigue in real time. SleepyWheels is successful in a wide range of test scenarios, including the lack of facial characteristics while covering the eye or mouth, the drivers varying skin tones, camera placements, and observational angles. It can work well when emulated to real time systems. SleepyWheels utilized EfficientNetV2 and a facial landmark detector for identifying drowsiness detection. The model is trained on a specially created dataset on driver sleepiness and it achieves an accuracy of 97 percent. The model is lightweight hence it can be further deployed as a mobile application for various platforms.Comment: 20 page
    • …
    corecore