253,515 research outputs found

    FRIOD: a deeply integrated feature-rich interactive system for effective and efficient outlier detection

    Get PDF
    In this paper, we propose an novel interactive outlier detection system called feature-rich interactive outlier detection (FRIOD), which features a deep integration of human interaction to improve detection performance and greatly streamline the detection process. A user-friendly interactive mechanism is developed to allow easy and intuitive user interaction in all the major stages of the underlying outlier detection algorithm which includes dense cell selection, location-aware distance thresholding, and final top outlier validation. By doing so, we can mitigate the major difficulty of the competitive outlier detection methods in specifying the key parameter values, such as the density and distance thresholds. An innovative optimization approach is also proposed to optimize the grid-based space partitioning, which is a critical step of FRIOD. Such optimization fully considers the high-quality outliers it detects with the aid of human interaction. The experimental evaluation demonstrates that FRIOD can improve the quality of the detected outliers and make the detection process more intuitive, effective, and efficient

    Rhythmic Representations: Learning Periodic Patterns for Scalable Place Recognition at a Sub-Linear Storage Cost

    Full text link
    Robotic and animal mapping systems share many challenges and characteristics: they must function in a wide variety of environmental conditions, enable the robot or animal to navigate effectively to find food or shelter, and be computationally tractable from both a speed and storage perspective. With regards to map storage, the mammalian brain appears to take a diametrically opposed approach to all current robotic mapping systems. Where robotic mapping systems attempt to solve the data association problem to minimise representational aliasing, neurons in the brain intentionally break data association by encoding large (potentially unlimited) numbers of places with a single neuron. In this paper, we propose a novel method based on supervised learning techniques that seeks out regularly repeating visual patterns in the environment with mutually complementary co-prime frequencies, and an encoding scheme that enables storage requirements to grow sub-linearly with the size of the environment being mapped. To improve robustness in challenging real-world environments while maintaining storage growth sub-linearity, we incorporate both multi-exemplar learning and data augmentation techniques. Using large benchmark robotic mapping datasets, we demonstrate the combined system achieving high-performance place recognition with sub-linear storage requirements, and characterize the performance-storage growth trade-off curve. The work serves as the first robotic mapping system with sub-linear storage scaling properties, as well as the first large-scale demonstration in real-world environments of one of the proposed memory benefits of these neurons.Comment: Pre-print of article that will appear in the IEEE Robotics and Automation Letter

    High-resolution DEM generated from LiDAR data for water resource management

    Get PDF
    Terrain patterns play an important role in determining the nature of water resources and related hydrological modelling. Digital Elevation Models (DEMs), offering an efficient way to represent ground surface, allow automated direct extraction of hydrological features (Garbrecht and Martz, 1999), thus bringing advantages in terms of processing efficiency, cost effectiveness, and accuracy assessment, compared with traditional methods based on topographic maps, field surveys, or photographic interpretations. However, researchers have found that DEM quality and resolution affect the accuracy of any extracted hydrological features (Kenward et al., 2000). Therefore, DEM quality and resolution must be specified according to the nature and application of the hydrological features. The most commonly used DEM in Victoria, Australia is Vicmap Elevation delivered by the Land Victoria, Department of Sustainability and Environment. It was produced by using elevation data mainly derived from existing contour map at a scale of 1:25,000 and digital stereo capture, providing a state-wide terrain surface representation with a horizontal resolution of 20 metres. The claimed standard deviations, vertical and horizontal, are 5 metres and 10 metres respectively (Land- Victoria, 2002). In worst case, horizontal errors could be up to ±30m. Although high resolution stereo aerial photos provide a potential way to generate high resolution DEMs, under the limitations of currently used technologies by prevalent commercial photogrammetry software, only DSMs (Digital Surface Models) other than DEMs can be directly generated. Manual removal of the nonground data so that the DSM is transformed into a DEM is time consuming. Therefore, using stereo aerial photos to produce DEM with currently available techniques is not an accurate and costeffective method. Light Detection and Ranging (LiDAR) data covering 6900 km² of the Corangamite Catchment area of Victoria were collected over the period 19 July 2003 to 10 August 2003. It will be used to support a series of salinity and water management projects for the Corangamite Catchment Management Authority (CCMA). The DEM derived from the LiDAR data has a vertical accuracy of 0.5m and a horizontal accuracy of 1.5m. The high quality DEM leads to derive much detailed terrain and hydrological attributes with high accuracy. Available data sources of DEMs in a catchment management area were evaluated in this study, including the Vicmap DEM, a DEM generated from stereo aerial photos, and LiDAR-derived DEM. LiDAR technology and LiDAR derived DEM were described. In order to assess the capability of LiDAR-derived DEM for improving the quality of extracted hydrological features, sub-catchment boundaries and drainage networks were generated from the Vicmap DEM and the LiDAR-derived DEM. Results were compared and analysed in terms of accuracy and resolution of DEMs. Elevation differences between Vicmap and LiDAR-derived DEMs are significant, up to 65m in some areas. Subcatchment boundaries derived from these two DEMs are also quite different. In spite of using same resolution for the Vicmap DEM and the LiDARderived DEM, high accuracy LiDAR-derived DEM gave a detailed delineation of sub-catchment. Compared with results derived from LiDAR DEM, the drainage networks derived from Vicmap DEM do not give a detailed description, and even lead to discrepancies in some areas. It is demonstrated that a LiDAR-derived DEM with high accuracy and high resolution offers the capability of improving the quality of hydrological features extracted from DEMs

    Towards Vision-Based Smart Hospitals: A System for Tracking and Monitoring Hand Hygiene Compliance

    Get PDF
    One in twenty-five patients admitted to a hospital will suffer from a hospital acquired infection. If we can intelligently track healthcare staff, patients, and visitors, we can better understand the sources of such infections. We envision a smart hospital capable of increasing operational efficiency and improving patient care with less spending. In this paper, we propose a non-intrusive vision-based system for tracking people's activity in hospitals. We evaluate our method for the problem of measuring hand hygiene compliance. Empirically, our method outperforms existing solutions such as proximity-based techniques and covert in-person observational studies. We present intuitive, qualitative results that analyze human movement patterns and conduct spatial analytics which convey our method's interpretability. This work is a step towards a computer-vision based smart hospital and demonstrates promising results for reducing hospital acquired infections.Comment: Machine Learning for Healthcare Conference (MLHC

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig
    • …
    corecore