31,313 research outputs found

    An Abstraction for Correspondence Search Using Task-Based Controls

    Full text link
    Abstract. The correspondence problem (finding matching regions in images) is a fundamental task in computer vision. While the concept is simple, the complexity of feature detectors and descriptors has increased as they provide more efficient and higher quality correspondences. This complexity is a barrier to developers or system designers who wish to use computer vision correspondence techniques within their applications. We have designed a novel abstraction layer which uses a task-based descrip-tion (covering the conditions of the problem) to allow a user to commu-nicate their requirements for the correspondence search. This is mainly based on the idea of variances which describe how sets of images vary in blur, intensity, angle, etc. Our framework interprets the description and chooses from a set of algorithms those that satisfy the description. Our proof-of-concept implementation demonstrates the link between the description set by the user and the result returned. The abstraction is also at a high enough level to hide implementation and device details, allowing the simple use of hardware acceleration.

    Progress in AI Planning Research and Applications

    Get PDF
    Planning has made significant progress since its inception in the 1970s, in terms both of the efficiency and sophistication of its algorithms and representations and its potential for application to real problems. In this paper we sketch the foundations of planning as a sub-field of Artificial Intelligence and the history of its development over the past three decades. Then some of the recent achievements within the field are discussed and provided some experimental data demonstrating the progress that has been made in the application of general planners to realistic and complex problems. The paper concludes by identifying some of the open issues that remain as important challenges for future research in planning

    Comparison of input devices in an ISEE direct timbre manipulation task

    Get PDF
    The representation and manipulation of sound within multimedia systems is an important and currently under-researched area. The paper gives an overview of the authors' work on the direct manipulation of audio information, and describes a solution based upon the navigation of four-dimensional scaled timbre spaces. Three hardware input devices were experimentally evaluated for use in a timbre space navigation task: the Apple Standard Mouse, Gravis Advanced Mousestick II joystick (absolute and relative) and the Nintendo Power Glove. Results show that the usability of these devices significantly affected the efficacy of the system, and that conventional low-cost, low-dimensional devices provided better performance than the low-cost, multidimensional dataglove

    Assume-Admissible Synthesis

    Get PDF
    In this paper, we introduce a novel rule for synthesis of reactive systems, applicable to systems made of n components which have each their own objectives. It is based on the notion of admissible strategies. We compare our novel rule with previous rules defined in the literature, and we show that contrary to the previous proposals, our rule defines sets of solutions which are rectangular. This property leads to solutions which are robust and resilient. We provide algorithms with optimal complexity and also an abstraction framework.Comment: 31 page

    Empiricism without Magic: Transformational Abstraction in Deep Convolutional Neural Networks

    Get PDF
    In artificial intelligence, recent research has demonstrated the remarkable potential of Deep Convolutional Neural Networks (DCNNs), which seem to exceed state-of-the-art performance in new domains weekly, especially on the sorts of very difficult perceptual discrimination tasks that skeptics thought would remain beyond the reach of artificial intelligence. However, it has proven difficult to explain why DCNNs perform so well. In philosophy of mind, empiricists have long suggested that complex cognition is based on information derived from sensory experience, often appealing to a faculty of abstraction. Rationalists have frequently complained, however, that empiricists never adequately explained how this faculty of abstraction actually works. In this paper, I tie these two questions together, to the mutual benefit of both disciplines. I argue that the architectural features that distinguish DCNNs from earlier neural networks allow them to implement a form of hierarchical processing that I call “transformational abstraction”. Transformational abstraction iteratively converts sensory-based representations of category exemplars into new formats that are increasingly tolerant to “nuisance variation” in input. Reflecting upon the way that DCNNs leverage a combination of linear and non-linear processing to efficiently accomplish this feat allows us to understand how the brain is capable of bi-directional travel between exemplars and abstractions, addressing longstanding problems in empiricist philosophy of mind. I end by considering the prospects for future research on DCNNs, arguing that rather than simply implementing 80s connectionism with more brute-force computation, transformational abstraction counts as a qualitatively distinct form of processing ripe with philosophical and psychological significance, because it is significantly better suited to depict the generic mechanism responsible for this important kind of psychological processing in the brain
    • 

    corecore