5 research outputs found

    A Simulation Tool for tccp Programs

    Get PDF
    The Timed Concurrent Constraint Language tccp is a declarative synchronous concurrent language, particularly suitable for modelling reactive systems. In tccp, agents communicate and synchronise through a global constraint store. It supports a notion of discrete time that allows all non-blocked agents to proceed with their execution simultaneously. In this paper, we present a modular architecture for the simulation of tccp programs. The tool comprises three main components. First, a set of basic abstract instructions able to model the tccp agent behaviour, the memory model needed to manage the active agents and the state of the store during the execution. Second, the agent interpreter that executes the instructions of the current agent iteratively and calculates the new agents to be executed at the next time instant. Finally, the constraint solver components which are the modules that deal with constraints. In this paper, we describe the implementation of these components and present an example of a real system modelled in tccp.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Programming Languages for Distributed Computing Systems

    Get PDF
    When distributed systems first appeared, they were programmed in traditional sequential languages, usually with the addition of a few library procedures for sending and receiving messages. As distributed applications became more commonplace and more sophisticated, this ad hoc approach became less satisfactory. Researchers all over the world began designing new programming languages specifically for implementing distributed applications. These languages and their history, their underlying principles, their design, and their use are the subject of this paper. We begin by giving our view of what a distributed system is, illustrating with examples to avoid confusion on this important and controversial point. We then describe the three main characteristics that distinguish distributed programming languages from traditional sequential languages, namely, how they deal with parallelism, communication, and partial failures. Finally, we discuss 15 representative distributed languages to give the flavor of each. These examples include languages based on message passing, rendezvous, remote procedure call, objects, and atomic transactions, as well as functional languages, logic languages, and distributed data structure languages. The paper concludes with a comprehensive bibliography listing over 200 papers on nearly 100 distributed programming languages
    corecore