3,051 research outputs found

    The Two-Step P2P Simulation Approach

    Get PDF
    In this article a framework is introduced that can be used to analyse the effects & requirements of P2P applications on application and on network layer. P2P applications are complex and deployed on a large scale, pure packet level simulations do not scale well enough to analyse P2P applications in a large network with thousands of peers. It is also difficult to assess the effect of application level behavior on the communication system. We therefore propose an approach starting with a more abstract and therefore scalable application level simulation. For the application layer a specific simulation framework was developed. The results of the application layer simulations plus some estimated background traffic are fed into a packet layer simulator like NS2 (or our lab testbed) in a second step to perform some detailed packet layer analysis such as loss and delay measurements. This can be done for a subnetwork of the original network to avoid scalability problems

    CLOSER: A Collaborative Locality-aware Overlay SERvice

    Get PDF
    Current Peer-to-Peer (P2P) file sharing systems make use of a considerable percentage of Internet Service Providers (ISPs) bandwidth. This paper presents the Collaborative Locality-aware Overlay SERvice (CLOSER), an architecture that aims at lessening the usage of expensive international links by exploiting traffic locality (i.e., a resource is downloaded from the inside of the ISP whenever possible). The paper proves the effectiveness of CLOSER by analysis and simulation, also comparing this architecture with existing solutions for traffic locality in P2P systems. While savings on international links can be attractive for ISPs, it is necessary to offer some features that can be of interest for users to favor a wide adoption of the application. For this reason, CLOSER also introduces a privacy module that may arouse the users' interest and encourage them to switch to the new architectur

    GLive: The Gradient overlay as a market maker for mesh-based P2P live streaming

    Get PDF
    Peer-to-Peer (P2P) live video streaming over the Internet is becoming increasingly popular, but it is still plagued by problems of high playback latency and intermittent playback streams. This paper presents GLive, a distributed market-based solution that builds a mesh overlay for P2P live streaming. The mesh overlay is constructed such that (i) nodes with increasing upload bandwidth are located closer to the media source, and (ii) nodes with similar upload bandwidth become neighbours. We introduce a market-based approach that matches nodes willing and able to share the stream with one another. However, market-based approaches converge slowly on random overlay networks, and we improve the rate of convergence by adapting our market-based algorithm to exploit the clustering of nodes with similar upload bandwidths in our mesh overlay. We address the problem of free-riding through nodes preferentially uploading more of the stream to the best uploaders. We compare GLive with our previous tree-based streaming protocol, Sepidar, and NewCoolstreaming in simulation, and our results show significantly improved playback continuity and playback latency
    corecore