262 research outputs found

    Meta-QoS performance of earliest-deadline-first and rate-monotonic scheduling of smoothed video data in a client-server environment

    Get PDF
    In this paper we present an extensive performance study of two modified EDF and RM scheduling algorithms which are enhanced to provide quality of service (QoS) guarantees for smoothed video data. With a probabilistic definition of QoS, we incorporate admission control conditions into the two algorithms. Furthermore, we also include a counter-based scheduling module as the core scheduling mechanism which adaptively adjusts the actual QoS levels assigned to requests. Our theoretical analysis of the two enhanced algorithms, called QEDF and QRM, shows that the QRM algorithm is more robust than the QEDF algorithm for different workload and utilization conditions. We also propose to use a new metric called meta-QoS to quantify the overall performance of a packet scheduler given a set of simultaneous requests. In our experiments, we find that the QRM algorithm can sustain a rather stable level of meta-QoS even when the workload and utilization levels are increased. On the other hand, the QEDF algorithm is found to be less desirable for a high level of utilization and a large number of requests.published_or_final_versio

    Survey of Transportation of Adaptive Multimedia Streaming service in Internet

    Full text link
    [DE] World Wide Web is the greatest boon towards the technological advancement of modern era. Using the benefits of Internet globally, anywhere and anytime, users can avail the benefits of accessing live and on demand video services. The streaming media systems such as YouTube, Netflix, and Apple Music are reining the multimedia world with frequent popularity among users. A key concern of quality perceived for video streaming applications over Internet is the Quality of Experience (QoE) that users go through. Due to changing network conditions, bit rate and initial delay and the multimedia file freezes or provide poor video quality to the end users, researchers across industry and academia are explored HTTP Adaptive Streaming (HAS), which split the video content into multiple segments and offer the clients at varying qualities. The video player at the client side plays a vital role in buffer management and choosing the appropriate bit rate for each such segment of video to be transmitted. A higher bit rate transmitted video pauses in between whereas, a lower bit rate video lacks in quality, requiring a tradeoff between them. The need of the hour was to adaptively varying the bit rate and video quality to match the transmission media conditions. Further, The main aim of this paper is to give an overview on the state of the art HAS techniques across multimedia and networking domains. A detailed survey was conducted to analyze challenges and solutions in adaptive streaming algorithms, QoE, network protocols, buffering and etc. It also focuses on various challenges on QoE influence factors in a fluctuating network condition, which are often ignored in present HAS methodologies. Furthermore, this survey will enable network and multimedia researchers a fair amount of understanding about the latest happenings of adaptive streaming and the necessary improvements that can be incorporated in future developments.Abdullah, MTA.; Lloret, J.; Canovas Solbes, A.; García-García, L. (2017). Survey of Transportation of Adaptive Multimedia Streaming service in Internet. Network Protocols and Algorithms. 9(1-2):85-125. doi:10.5296/npa.v9i1-2.12412S8512591-

    An Integrated Network Architecture for a High Speed Distributed Multimedia System.

    Get PDF
    Computer communication demands for higher bandwidth and smaller delays are increasing rapidly as the march into the twenty-first century gains momentum. These demands are generated by visualization applications which model complex real time phenomena in visual form, electronic document imaging and manipulation, concurrent engineering, on-line databases and multimedia applications which integrate audio, video and data. The convergence of the computer and video worlds is leading to the emergence of a distributed multimedia environment. This research investigates an integrated approach in the design of a high speed computer-video local area network for a distributed multimedia environment. The initial step in providing multimedia services over computer networks is to ensure bandwidth availability for these services. The bandwidth needs based on traffic generated in a distributed multimedia environment is computationally characterized by a model. This model is applied to the real-time problem of designing a backbone for a distributed multimedia environment at the NASA Classroom of the Future Program. The network incorporates legacy LANs and the latest high speed switching technologies. Performance studies have been conducted with different network topologies for various multimedia application scenarios to establish benchmarks for the operation of the network. In these performance studies it has been observed that network topologies play an important role in ensuring that sufficient bandwidth is available for multimedia traffic. After the implementation of the network and the performance studies, it was found that for true quality of service guarantees, some modifications will have to be made in the multimedia operating systems used in client workstations. These modifications would gather knowledge of the channel between source and destination and reserve resources for multimedia communication based on specified requirements. A scheme for reserving resources in a network consisting legacy LAN and ATM is presented to guarantee quality of service for multimedia applications

    QoS provisioning in multimedia streaming

    Get PDF
    Multimedia consists of voice, video, and data. Sample applications include video conferencing, video on demand, distance learning, distributed games, and movies on demand. Providing Quality of Service (QoS) for multimedia streaming has been a difficult and challenging problem. When multimedia traffic is transported over a network, video traffic, though usually compressed/encoded for bandwidth reduction, still consumes most of the bandwidth. In addition, compressed video streams typically exhibit highly variable bit rates as well as long range dependence properties, thus exacerbating the challenge in meeting the stringent QoS requirements of multimedia streaming with high network utilization. Dynamic bandwidth allocation in which video traffic prediction can play an important role is thus needed. Prediction of the variation of the I frame size using Least Mean Square (LMS) is first proposed. Owing to a smoother sequence, better prediction has been achieved as compared to the composite MPEG video traffic prediction scheme. One problem with this LMS algorithm is its slow convergence. In Variable Bit Rate (VBR) videos characterized by frequent scene changes, the LMS algorithm may result in an extended period of intractability, and thus may experience excessive cell loss during scene changes. A fast convergent non-linear predictor called Variable Step-size Algorithm (VSA) is subsequently proposed to overcome this drawback. The VSA algorithm not only incurs small prediction errors but more importantly achieves fast convergence. It tracks scene changes better than LMS. Bandwidth is then assigned based on the predicted I frame size which is usually the largest in a Group of Picture (GOP). Hence, the Cell Loss Ratio (CLR) can be kept small. By reserving bandwidth at least equal to the predicted one, only prediction errors need to be buffered. Since the prediction error was demonstrated to resemble white noise or exhibits at most short term memory, smaller buffers, less delay, and higher bandwidth utilization can be achieved. In order to further improve network bandwidth utilization, a QoS guaranteed on-line bandwidth allocation is proposed. This method allocates the bandwidth based on the predicted GOP and required QoS. Simulations and analytical results demonstrate that this scheme provides guaranteed delay and achieves higher bandwidth utilization. Network traffic is generally accepted to be self similar. Aggregating self similar traffic can actually intensify rather than diminish burstiness. Thus, traffic prediction plays an important role in network management. Least Mean Kurtosis (LMK), which uses the negated kurtosis of the error signal as the cost function, is proposed to predict the self similar traffic. Simulation results show that the prediction performance is improved greatly as compared to the LMS algorithm. Thus, it can be used to effectively predict the real time network traffic. The Differentiated Service (DiffServ) model is a less complex and more scalable solution for providing QoS to IP as compared to the Integrated Service (IntServ) model. We propose to transport MPEG frames through various service classes of DiffServ according to the MPEG video characteristics. Performance analysis and simulation results show that our proposed approach can not only guarantee QoS but can also achieve high bandwidth utilization. As the end video quality is determined not only by the network QoS but also by the encoded video quality, we consider video quality from these two aspects and further propose to transport spatial scalable encoded videos over DiffServ. Performance analysis and simulation results show that this can provision QoS guarantees. The dropping policy we propose at the egress router can reduce the traffic load as well as the risk of congestion in other domains

    Content-Aware Multimedia Communications

    Get PDF
    The demands for fast, economic and reliable dissemination of multimedia information are steadily growing within our society. While people and economy increasingly rely on communication technologies, engineers still struggle with their growing complexity. Complexity in multimedia communication originates from several sources. The most prominent is the unreliability of packet networks like the Internet. Recent advances in scheduling and error control mechanisms for streaming protocols have shown that the quality and robustness of multimedia delivery can be improved significantly when protocols are aware of the content they deliver. However, the proposed mechanisms require close cooperation between transport systems and application layers which increases the overall system complexity. Current approaches also require expensive metrics and focus on special encoding formats only. A general and efficient model is missing so far. This thesis presents efficient and format-independent solutions to support cross-layer coordination in system architectures. In particular, the first contribution of this work is a generic dependency model that enables transport layers to access content-specific properties of media streams, such as dependencies between data units and their importance. The second contribution is the design of a programming model for streaming communication and its implementation as a middleware architecture. The programming model hides the complexity of protocol stacks behind simple programming abstractions, but exposes cross-layer control and monitoring options to application programmers. For example, our interfaces allow programmers to choose appropriate failure semantics at design time while they can refine error protection and visibility of low-level errors at run-time. Based on some examples we show how our middleware simplifies the integration of stream-based communication into large-scale application architectures. An important result of this work is that despite cross-layer cooperation, neither application nor transport protocol designers experience an increase in complexity. Application programmers can even reuse existing streaming protocols which effectively increases system robustness.Der Bedarf unsere Gesellschaft nach kostengünstiger und zuverlässiger Kommunikation wächst stetig. Während wir uns selbst immer mehr von modernen Kommunikationstechnologien abhängig machen, müssen die Ingenieure dieser Technologien sowohl den Bedarf nach schneller Einführung neuer Produkte befriedigen als auch die wachsende Komplexität der Systeme beherrschen. Gerade die Übertragung multimedialer Inhalte wie Video und Audiodaten ist nicht trivial. Einer der prominentesten Gründe dafür ist die Unzuverlässigkeit heutiger Netzwerke, wie z.B.~dem Internet. Paketverluste und schwankende Laufzeiten können die Darstellungsqualität massiv beeinträchtigen. Wie jüngste Entwicklungen im Bereich der Streaming-Protokolle zeigen, sind jedoch Qualität und Robustheit der Übertragung effizient kontrollierbar, wenn Streamingprotokolle Informationen über den Inhalt der transportierten Daten ausnutzen. Existierende Ansätze, die den Inhalt von Multimediadatenströmen beschreiben, sind allerdings meist auf einzelne Kompressionsverfahren spezialisiert und verwenden berechnungsintensive Metriken. Das reduziert ihren praktischen Nutzen deutlich. Außerdem erfordert der Informationsaustausch eine enge Kooperation zwischen Applikationen und Transportschichten. Da allerdings die Schnittstellen aktueller Systemarchitekturen nicht darauf vorbereitet sind, müssen entweder die Schnittstellen erweitert oder alternative Architekturkonzepte geschaffen werden. Die Gefahr beider Varianten ist jedoch, dass sich die Komplexität eines Systems dadurch weiter erhöhen kann. Das zentrale Ziel dieser Dissertation ist es deshalb, schichtenübergreifende Koordination bei gleichzeitiger Reduzierung der Komplexität zu erreichen. Hier leistet die Arbeit zwei Beträge zum aktuellen Stand der Forschung. Erstens definiert sie ein universelles Modell zur Beschreibung von Inhaltsattributen, wie Wichtigkeiten und Abhängigkeitsbeziehungen innerhalb eines Datenstroms. Transportschichten können dieses Wissen zur effizienten Fehlerkontrolle verwenden. Zweitens beschreibt die Arbeit das Noja Programmiermodell für multimediale Middleware. Noja definiert Abstraktionen zur Übertragung und Kontrolle multimedialer Ströme, die die Koordination von Streamingprotokollen mit Applikationen ermöglichen. Zum Beispiel können Programmierer geeignete Fehlersemantiken und Kommunikationstopologien auswählen und den konkreten Fehlerschutz dann zur Laufzeit verfeinern und kontrolliere

    Quality of Experience and Adaptation Techniques for Multimedia Communications

    Get PDF
    The widespread use of multimedia services on the World Wide Web and the advances in end-user portable devices have recently increased the user demands for better quality. Moreover, providing these services seamlessly and ubiquitously on wireless networks and with user mobility poses hard challenges. To meet these challenges and fulfill the end-user requirements, suitable strategies need to be adopted at both application level and network level. At the application level rate and quality have to be adapted to time-varying bandwidth limitations, whereas on the network side a mechanism for efficient use of the network resources has to be implemented, to provide a better end-user Quality of Experience (QoE) through better Quality of Service (QoS). The work in this thesis addresses these issues by first investigating multi-stream rate adaptation techniques for Scalable Video Coding (SVC) applications aimed at a fair provision of QoE to end-users. Rate Distortion (R-D) models for real-time and non real-time video streaming have been proposed and a rate adaptation technique is also developed to minimize with fairness the distortion of multiple videos with difference complexities. To provide resiliency against errors, the effect of Unequal Error protection (UXP) based on Reed Solomon (RS) encoding with erasure correction has been also included in the proposed R-D modelling. Moreover, to improve the support of QoE at the network level for multimedia applications sensitive to delays, jitters and packet drops, a technique to prioritise different traffic flows using specific QoS classes within an intermediate DiffServ network integrated with a WiMAX access system is investigated. Simulations were performed to test the network under different congestion scenarios

    Adaptive Systems for Improved Media Streaming Experience

    Get PDF

    Adaptive systems for improved media streaming experience

    Full text link
    corecore