1,423 research outputs found

    Multidisciplinary Approaches and Challenges in Integrating Emerging Medical Devices Security Research and Education

    Get PDF
    Traditional embedded systems such as secure smart cards and nano-sensor networks have been utilized in various usage models. Nevertheless, emerging secure deeply-embedded systems, e.g., implantable and wearable medical devices, have comparably larger “attack surface”. Specifically, with respect to medical devices, a security breach can be life-threatening (for which adopting traditional solutions might not be practical due to tight constraints of these often-battery-powered systems), and unlike traditional embedded systems, it is not only a matter of financial loss. Unfortunately, although emerging cryptographic engineering research mechanisms for such deeply-embedded systems have started solving this critical, vital problem, university education (at both graduate and undergraduate level) lags comparably. One of the pivotal reasons for such a lag is the multi-disciplinary nature of the emerging security bottlenecks. Based on the aforementioned motivation, in this work, at Rochester Institute of Technology, we present an effective research and education integration strategy to overcome this issue in one of the most critical deeply-embedded systems, i.e., medical devices. Moreover, we present the results of two years of implementation of the presented strategy at graduate-level through fault analysis attacks, a variant of side-channel attacks. We note that the authors also supervise an undergraduate student and the outcome of the presented work has been assessed for that student as well; however, the emphasis is on graduate-level integration. The results of the presented work show the success of the presented methodology while pinpointing the challenges encountered compared to traditional embedded system security research/teaching integration of medical devices security. We would like to emphasize that our integration approaches are general and scalable to other critical infrastructures as well

    MULTI-GIGABIT PATTERN FOR DATA IN NETWORK SECURITY

    Get PDF
    In the current scenario network security is emerging the world. Matching large sets of patterns against an incoming stream of data is a fundamental task in several fields such as network security or computational biology. High-speed network intrusion detection systems (IDS) rely on efficient pattern matching techniques to analyze the packet payload and make decisions on the significance of the packet body. However, matching the streaming payload bytes against thousands of patterns at multi-gigabit rates is computationally intensive. Various techniques have been proposed in past but the performance of the system is reducing because of multi-gigabit rates.Pattern matching is a significant issue in intrusion detection systems, but by no means the only one. Handling multi-content rules, reordering, and reassembling incoming packets are also significant for system performance. We present two pattern matching techniques to compare incoming packets against intrusion detection search patterns. The first approach, decoded partial CAM (DpCAM), pre-decodes incoming characters, aligns the decoded data, and performs logical AND on them to produce the match signal for each pattern. The second approach, perfect hashing memory (PHmem), uses perfect hashing to determine a unique memory location that contains the search pattern and a comparison between incoming data and memory output to determine the match. The suggested methods have implemented in vhdl coding and we use Xilinx for synthesis

    Design of an efficient binary phase-shift keying based IEEE 802.15.4 transceiver architecture and its performance analysis

    Get PDF
    The IEEE 802.15.4 physical layer (PHY) standard is one of the communication standards with wireless features by providing low-power and low-data rates in wireless personal area network (WPAN) applications. In this paper, an efficient IEEE 802.15.4 digital transceiver hardware architecture is designed using the binary phase-shift keying (BPSK) technique. The transceiver mainly has transmitter and receiver modules along with the error calculation unit. The BPSK modulation and demodulation are designed using a digital frequency synthesizer (DFS). The DFS is used to generate the in-phase (I) and quadrature-phase (Q) signals and also provides better system performance than the conventional voltage-controlled oscillator (VCO) and look up table (LUT) based memory methods. The differential encoding-decoding mechanism is incorporated to recover the bits effectively and to reduce the hardware complexity. The simulation results are illustrated and used to find the error bits. The design utilizes less chip area, works at 268.2 MHz, and consumes 108 mW of total power. The IEEE 802.15.4 transceiver provides a latency of 3.5 clock cycles and works with a throughput of 76.62 Mbps. The bit error rate (BER) of 2×10-5 is achieved by the proposed digital transceiver and is suitable for real-time applications. The work is compared with existing similar approaches with better improvement in performance parameters
    corecore