79,359 research outputs found

    Fast YOLO: A Fast You Only Look Once System for Real-time Embedded Object Detection in Video

    Get PDF
    Object detection is considered one of the most challenging problems in this field of computer vision, as it involves the combination of object classification and object localization within a scene. Recently, deep neural networks (DNNs) have been demonstrated to achieve superior object detection performance compared to other approaches, with YOLOv2 (an improved You Only Look Once model) being one of the state-of-the-art in DNN-based object detection methods in terms of both speed and accuracy. Although YOLOv2 can achieve real-time performance on a powerful GPU, it still remains very challenging for leveraging this approach for real-time object detection in video on embedded computing devices with limited computational power and limited memory. In this paper, we propose a new framework called Fast YOLO, a fast You Only Look Once framework which accelerates YOLOv2 to be able to perform object detection in video on embedded devices in a real-time manner. First, we leverage the evolutionary deep intelligence framework to evolve the YOLOv2 network architecture and produce an optimized architecture (referred to as O-YOLOv2 here) that has 2.8X fewer parameters with just a ~2% IOU drop. To further reduce power consumption on embedded devices while maintaining performance, a motion-adaptive inference method is introduced into the proposed Fast YOLO framework to reduce the frequency of deep inference with O-YOLOv2 based on temporal motion characteristics. Experimental results show that the proposed Fast YOLO framework can reduce the number of deep inferences by an average of 38.13%, and an average speedup of ~3.3X for objection detection in video compared to the original YOLOv2, leading Fast YOLO to run an average of ~18FPS on a Nvidia Jetson TX1 embedded system

    Smart environment monitoring through micro unmanned aerial vehicles

    Get PDF
    In recent years, the improvements of small-scale Unmanned Aerial Vehicles (UAVs) in terms of flight time, automatic control, and remote transmission are promoting the development of a wide range of practical applications. In aerial video surveillance, the monitoring of broad areas still has many challenges due to the achievement of different tasks in real-time, including mosaicking, change detection, and object detection. In this thesis work, a small-scale UAV based vision system to maintain regular surveillance over target areas is proposed. The system works in two modes. The first mode allows to monitor an area of interest by performing several flights. During the first flight, it creates an incremental geo-referenced mosaic of an area of interest and classifies all the known elements (e.g., persons) found on the ground by an improved Faster R-CNN architecture previously trained. In subsequent reconnaissance flights, the system searches for any changes (e.g., disappearance of persons) that may occur in the mosaic by a histogram equalization and RGB-Local Binary Pattern (RGB-LBP) based algorithm. If present, the mosaic is updated. The second mode, allows to perform a real-time classification by using, again, our improved Faster R-CNN model, useful for time-critical operations. Thanks to different design features, the system works in real-time and performs mosaicking and change detection tasks at low-altitude, thus allowing the classification even of small objects. The proposed system was tested by using the whole set of challenging video sequences contained in the UAV Mosaicking and Change Detection (UMCD) dataset and other public datasets. The evaluation of the system by well-known performance metrics has shown remarkable results in terms of mosaic creation and updating, as well as in terms of change detection and object detection

    Beef Cattle Instance Segmentation Using Fully Convolutional Neural Network

    Get PDF
    In this paper we present a novel instance segmentation algorithm that extends a fully convolutional network to learn to label objects separately without prediction of regions of interest. We trained the new algorithm on a challenging CCTV recording of beef cattle, as well as benchmark MS COCO and Pascal VOC datasets. Extensive experimentation showed that our approach outperforms the state-of-the-art solutions by up to 8% on our data

    A deep learning framework for quality assessment and restoration in video endoscopy

    Full text link
    Endoscopy is a routine imaging technique used for both diagnosis and minimally invasive surgical treatment. Artifacts such as motion blur, bubbles, specular reflections, floating objects and pixel saturation impede the visual interpretation and the automated analysis of endoscopy videos. Given the widespread use of endoscopy in different clinical applications, we contend that the robust and reliable identification of such artifacts and the automated restoration of corrupted video frames is a fundamental medical imaging problem. Existing state-of-the-art methods only deal with the detection and restoration of selected artifacts. However, typically endoscopy videos contain numerous artifacts which motivates to establish a comprehensive solution. We propose a fully automatic framework that can: 1) detect and classify six different primary artifacts, 2) provide a quality score for each frame and 3) restore mildly corrupted frames. To detect different artifacts our framework exploits fast multi-scale, single stage convolutional neural network detector. We introduce a quality metric to assess frame quality and predict image restoration success. Generative adversarial networks with carefully chosen regularization are finally used to restore corrupted frames. Our detector yields the highest mean average precision (mAP at 5% threshold) of 49.0 and the lowest computational time of 88 ms allowing for accurate real-time processing. Our restoration models for blind deblurring, saturation correction and inpainting demonstrate significant improvements over previous methods. On a set of 10 test videos we show that our approach preserves an average of 68.7% which is 25% more frames than that retained from the raw videos.Comment: 14 page
    corecore