132 research outputs found

    ARQ Protocols in Cognitive Decode-and-Forward Relay Networks: Opportunities Gain

    Get PDF
    In this paper, two novel automatic-repeat-request (ARQ) based protocols were proposed, which exploit coop- eration opportunity inherent in secondary retransmission to create access opportunities. If the signal was not decoded correctly in destination, another user can be acted as a relay to reduce retransmission rounds by relaying the signal. For comparison, we also propose a Direct ARQ Protocol. Specif- ically, we derive the exact closed-form outage probability of three protocols, which provides an effective means to evalu- ate the effects of several parameters. Moreover, we propose a new metric to evaluate the performance improvement for cognitive networks. Finally, Monte Carlo simulations were presented to validate the theory analysis, and a comparison is made among the three protocols

    Adaptive Modulation and Coding and Cooperative ARQ in a Cognitive Radio System

    Full text link
    In this paper, a joint cross-layer design of adaptive modulation and coding (AMC) and cooperative automatic repeat request (C-ARQ) scheme is proposed for a secondary user in a shared-spectrum environment. First, based on the statistical descriptions of the channel, closed-form expressions of the average spectral efficiency (SE) and the average packet loss rate (PLR) are presented. Then, the cross-layer scheme is designed, with the aim of maximizing the average SE while maintaining the average PLR under a prescribed level. An optimization problem is formed, and a sub-optimal solution is found: the target packet error rates (PER) for the secondary system channels are obtained and the corresponding sub-optimal AMC rate adaptation policy is derived based on the target PERs. Finally, the average SE and the average PLR performance of the proposed scheme are presented

    Spectrally-efficient SIMO relay-aided underlay communications: An exact outage analysis

    No full text
    International audienceIn this paper, we carry out an exact outage analysis for a secondary (unlicensed) system operating under a strict primary (licensed) system outage constraint. We focus on single-user singleinput multiple-output (SIMO) secondary communications where the direct link is being assisted by a cluster of single-antenna decodeand-forward (DF) relay nodes acting in a half-duplex selective-andincremental relaying mode. Firstly, we derive a transmit power model for the secondary system where the source and relays adapt their transmit power based on: 1) a perfect acquisition of the underlying interference channel state information (I-CSI), and 2) an interference constraint that is either fixed or proportional to the primary system outage probability. Secondly, the cumulative distribution functions (CDF)s of the received signal-to-noise ratio (SNR) at the secondary receiving nodes are devised in a recursive and tractable closed-form expressions. These statistics are used to derive the exact end-to-end secondary system outage probability. The analytical and simulation results are then compared and interestingly shown to perfectly match, while revealing that with a moderate number of primary and secondary receive antennas, the secondary system spectral efficiency is amply enhanced as opposed to being severely degraded in the single receive antenna case

    Maximum Average Service Rate and Optimal Queue Scheduling of Delay-Constrained Hybrid Cognitive Radio in Nakagami Fading Channels

    No full text
    As a promising technique to improve achievable bandwidth efficiency, cognitive radio (CR) has attracted substantial research attention from both the academic and industrial communities. To improve the performance attained by the secondary user (SU), a novel hybrid CR system is proposed, which combines the conventional interweave and underlay paradigms to enhance the chance of the SU to access the spectrum. Queuing theory is invoked in this paper to analyze the impact of the primary user’s maximum tolerable delay on the performance of the SU. Multiple queues are assumed for the SU, which is engaged in video communication. Apart from the Poisson traffic generation,we also model the classic Nakagami-m fading channel as a Poisson service process by utilizing the outage probability in the presence of cochannel interference. We optimize both the hybrid interweave/underlay procedure to maximize the average service rate μ_S,max of the SU, as well as the queue’s scheduling scheme, for the sake of minimizing the overall average delay (OAD). As a result, the OAD of the SU is reduced by up to 27% and 20%, compared with the proportion and round-robin schemes, respectively

    Access Policy Design for Cognitive Secondary Users under a Primary Type-I HARQ Process

    Full text link
    In this paper, an underlay cognitive radio network that consists of an arbitrary number of secondary users (SU) is considered, in which the primary user (PU) employs Type-I Hybrid Automatic Repeat Request (HARQ). Exploiting the redundancy in PU retransmissions, each SU receiver applies forward interference cancelation to remove a successfully decoded PU message in the subsequent PU retransmissions. The knowledge of the PU message state at the SU receivers and the ACK/NACK message from the PU receiver are sent back to the transmitters. With this approach and using a Constrained Markov Decision Process (CMDP) model and Constrained Multi-agent MDP (CMMDP), centralized and decentralized optimum access policies for SUs are proposed to maximize their average sum throughput under a PU throughput constraint. In the decentralized case, the channel access decision of each SU is unknown to the other SU. Numerical results demonstrate the benefits of the proposed policies in terms of sum throughput of SUs. The results also reveal that the centralized access policy design outperforms the decentralized design especially when the PU can tolerate a low average long term throughput. Finally, the difficulties in decentralized access policy design with partial state information are discussed
    • …
    corecore