201 research outputs found

    Heart Rate Variability: A possible machine learning biomarker for mechanical circulatory device complications and heart recovery

    Get PDF
    Cardiovascular disease continues to be the number one cause of death in the United States, with heart failure patients expected to increase to \u3e8 million by 2030. Mechanical circulatory support (MCS) devices are now better able to manage acute and chronic heart failure refractory to medical therapy, both as bridge to transplant or as bridge to destination. Despite significant advances in MCS device design and surgical implantation technique, it remains difficult to predict response to device therapy. Heart rate variability (HRV), measuring the variation in time interval between adjacent heartbeats, is an objective device diagnostic regularly recorded by various MCS devices that has been shown to have significant prognostic value for both sudden cardiac death as well as all-cause mortality in congestive heart failure (CHF) patients. Limited studies have examined HRV indices as promising risk factors and predictors of complication and recovery from left ventricular assist device therapy in end-stage CHF patients. If paired with new advances in machine learning utilization in medicine, HRV represents a potential dynamic biomarker for monitoring and predicting patient status as more patients enter the mechanotrope era of MCS devices for destination therapy

    Heart Rate Variability Dynamics for the Prognosis of Cardiovascular Risk

    Get PDF
    Statistical, spectral, multi-resolution and non-linear methods were applied to heart rate variability (HRV) series linked with classification schemes for the prognosis of cardiovascular risk. A total of 90 HRV records were analyzed: 45 from healthy subjects and 45 from cardiovascular risk patients. A total of 52 features from all the analysis methods were evaluated using standard two-sample Kolmogorov-Smirnov test (KS-test). The results of the statistical procedure provided input to multi-layer perceptron (MLP) neural networks, radial basis function (RBF) neural networks and support vector machines (SVM) for data classification. These schemes showed high performances with both training and test sets and many combinations of features (with a maximum accuracy of 96.67%). Additionally, there was a strong consideration for breathing frequency as a relevant feature in the HRV analysis

    Heart Rate Variability Dynamics for the Prognosis of Cardiovascular Risk

    Get PDF
    Statistical, spectral, multi-resolution and non-linear methods were applied to heart rate variability (HRV) series linked with classification schemes for the prognosis of cardiovascular risk. A total of 90 HRV records were analyzed: 45 from healthy subjects and 45 from cardiovascular risk patients. A total of 52 features from all the analysis methods were evaluated using standard two-sample Kolmogorov-Smirnov test (KS-test). The results of the statistical procedure provided input to multi-layer perceptron (MLP) neural networks, radial basis function (RBF) neural networks and support vector machines (SVM) for data classification. These schemes showed high performances with both training and test sets and many combinations of features (with a maximum accuracy of 96.67%). Additionally, there was a strong consideration for breathing frequency as a relevant feature in the HRV analysis

    Artificial intelligence based ECG signal classification of sendetary, smokers and athletes

    Get PDF
    The current study deals with the design of a computer aided diagnosis procedure to classify 3 groups of people with different lifestyles, namely sedentary, smoker and athletes. The ECG Classification based on statistical analysis of HRV and ECG features. The heart rate variability (HRV) parameters and ECG statistical features were used for the pattern recognition in Artificial Intelligence classifiers. The ECG was recorded for a particular time duration using the EKG sensor. The HRV, time domain and wavelet parameters were calculated using NI BIOMEDICAL STARTUP KIT 3.0 and LABVIEW 2010. The important HRV features, time domain and wavelet features were calculated by the statistical non-linear classifiers (CART and BT).the important parameters were fed as input to artificial intelligence classifiers like ANN and SVM. The Artificial Intelligence classifiers like artificial neural network (ANN) and Support vector Machine (SVM) were used to classify 60 numbers of ECG signal. It was observed from result that the Multi layer perceptron (MLP) based ANN classifier gives an accuracy of 95%, which is highest among other the classifiers. The HRV study implies that the time domain parameters (RMSSD and PNN50), frequency domain parameters (HF power and LF/HF peak), Poincare parameter (SD1) and geometric parameters (RR triangular index and TINN) are higher in athlete class and lower in smoker class. The Higher values of HRV parameters indicate increase in parasympathetic activity and decrease in sympathetic activity of the ANS. This indicates that the athlete class has better heath and less chance of cardiovascular diseases where smoker class has high chances of cardiovascular diseases. These HRV parameters of sedentary class were higher than smoker class but lower than athlete class. This indicates less chances of cardiovascular disease in sedentary class as compared to smoker class

    Novel Approaches to Pervasive and Remote Sensing in Cardiovascular Disease Assessment

    Get PDF
    Cardiovascular diseases (CVDs) are the leading cause of death worldwide, responsible for 45% of all deaths. Nevertheless, their mortality is decreasing in the last decade due to better prevention, diagnosis, and treatment resources. An important medical instrument for the latter processes is the Electrocardiogram (ECG). The ECG is a versatile technique used worldwide for its ease of use, low cost, and accessibility, having evolved from devices that filled up a room, to small patches or wrist- worn devices. Such evolution allowed for more pervasive and near-continuous recordings. The analysis of an ECG allows for studying the functioning of other physiological systems of the body. One such is the Autonomic Nervous System (ANS), responsible for controlling key bodily functions. The ANS can be studied by analyzing the characteristic inter-beat variations, known as Heart Rate Variability (HRV). Leveraging this relation, a pilot study was developed, where HRV was used to quantify the contribution of the ANS in modulating cardioprotection offered by an experimental medical procedure called Remote Ischemic Conditioning (RIC), offering a more objective perspective. To record an ECG, electrodes are responsible for converting the ion-propagated action potential to electrons, needed to record it. They are produced from different materials, including metal, carbon-based, or polymers. Also, they can be divided into wet (if an elec- trolyte gel is used) or dry (if no added electrolyte is used). Electrodes can be positioned either inside the body (in-the-person), attached to the skin (on-the-body), or embedded in daily life objects (off-the-person), with the latter allowing for more pervasive recordings. To this effect, a novel mobile acquisition device for recording ECG rhythm strips was developed, where polymer-based embedded electrodes are used to record ECG signals similar to a medical-grade device. One drawback of off-the-person solutions is the increased noise, mainly caused by the intermittent contact with the recording surfaces. A new signal quality metric was developed based on delayed phase mapping, a technique that maps time series to a two-dimensional space, which is then used to classify a segment into good or noisy. Two different approaches were developed, one using a popular image descriptor, the Hu image moments; and the other using a Convolutional Neural Network, both with promising results for their usage as signal quality index classifiers.As doenças cardiovasculares (DCVs) são a principal causa de morte no mundo, res- ponsáveis por 45% de todas estas. No entanto, a sua mortalidade tem vindo a diminuir na última década, devido a melhores recursos na prevenção, diagnóstico e tratamento. Um instrumento médico importante para estes recursos é o Eletrocardiograma (ECG). O ECG é uma técnica versátil utilizada em todo o mundo pela sua facilidade de uso, baixo custo e acessibilidade, tendo evoluído de dispositivos que ocupavam uma sala inteira para pequenos adesivos ou dispositivos de pulso. Tal evolução permitiu aquisições mais pervasivas e quase contínuas. A análise de um ECG permite estudar o funcionamento de outros sistemas fisiológi- cos do corpo. Um deles é o Sistema Nervoso Autônomo (SNA), responsável por controlar as principais funções corporais. O SNA pode ser estudado analisando as variações inter- batidas, conhecidas como Variabilidade da Frequência Cardíaca (VFC). Aproveitando essa relação, foi desenvolvido um estudo piloto, onde a VFC foi utilizada para quantificar a contribuição do SNA na modulação da cardioproteção oferecida por um procedimento mé- dico experimental, denominado Condicionamento Isquêmico Remoto (CIR), oferecendo uma perspectiva mais objetiva. Na aquisição de um ECG, os elétrodos são os responsáveis por converter o potencial de ação propagado por iões em eletrões, necessários para a sua recolha. Estes podem ser produzidos a partir de diferentes materiais, incluindo metal, à base de carbono ou polímeros. Além disso, os elétrodos podem ser classificados em húmidos (se for usado um gel eletrolítico) ou secos (se não for usado um eletrólito adicional). Os elétrodos podem ser posicionados dentro do corpo (dentro-da-pessoa), colocados em contacto com a pele (na-pessoa) ou embutidos em objetos da vida quotidiana (fora-da-pessoa), sendo que este último permite gravações mais pervasivas . Para este efeito, foi desenvolvido um novo dispositivo de aquisição móvel para gravar sinal de ECG, onde elétrodos embutidos à base de polímeros são usados para recolher sinais de ECG semelhantes a um dispositivo de grau médico. Uma desvantagem das soluções onde os elétrodos estão embutidos é o aumento do ruído, causado principalmente pelo contato intermitente com as superfícies de aquisição. Uma nova métrica de qualidade de sinal foi desenvolvida com base no mapeamento de fase atrasada, uma técnica que mapeia séries temporais para um espaço bidimensional, que é então usado para classificar um segmento em bom ou ruidoso. Duas abordagens diferentes foram desenvolvidas, uma usando um popular descritor de imagem, e outra utilizando uma Rede Neural Convolucional, com resultados promissores para o seu uso como classificadores de qualidade de sinal

    Prediction of Sudden Cardiac Death Using Ensemble Classifiers

    Get PDF
    Sudden Cardiac Death (SCD) is a medical problem that is responsible for over 300,000 deaths per year in the United States and millions worldwide. SCD is defined as death occurring from within one hour of the onset of acute symptoms, an unwitnessed death in the absence of pre-existing progressive circulatory failures or other causes of deaths, or death during attempted resuscitation. Sudden death due to cardiac reasons is a leading cause of death among Congestive Heart Failure (CHF) patients. The use of Electronic Medical Records (EMR) systems has made a wealth of medical data available for research and analysis. Supervised machine learning methods have been successfully used for medical diagnosis. Ensemble classifiers are known to achieve better prediction accuracy than its constituent base classifiers. In an effort to understand the factors contributing to SCD, data on 2,521 patients were collected for the Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT). The data included 96 features that were gathered over a period of 5 years. The goal of this dissertation was to develop a model that could accurately predict SCD based on available features. The prediction model used the Cox proportional hazards model as a score and then used the ExtraTreesClassifier algorithm as a boosting mechanism to create the ensemble. We tested the system at prediction points of 180 days and 365 days. Our best results were at 180-days with accuracy of 0.9624, specificity of 0.9915, and F1 score of 0.9607

    Deep Featured Adaptive Dense Net Convolutional Neural Network Based Cardiac Risk Prediction in Big Data Healthcare Environment

    Get PDF
    In recent days, cardiac vascular disease has been one of the deadliest health-affecting factors causing sudden death. So, the importance of early risk prediction through feature analysis has become a big problem in data analysis because more nonlinear time series data increase the feature dimension. Irrelevant feature dimension scaling affects the prediction accuracy and leads to classification inaccuracy. To resolve this problem, we propose an Enhanced Healthcare data analysis model for cardiac data prediction using an adaptive Deep Featured Adaptive Convolution Neural Network for early risk identification. Initially, the preprocessing was augmented to formalize the time series data collected from the CVD-DS dataset. Then the feature evaluation was carried out with the Relative Subset Clustering (RSC) approach. The Cardiac Deficiency Prediction rate (CDPr) was estimated to identify the relational feature to subset margins. Based on the CDPr weight the feature is extracted using Cross-Over Mutual Scaling Feature Selection Model (CMSFS). The selected features get with a deep neural classifier based on logical neurons. They are then constructed into a Dense Net Convolution Neural Network (DN-CNN) classifier to feed forward the feature values and predict the Disease Affection Rate (DAR) by class category. The proposed system produces high prediction accuracy in classification, precision, and recall rate to support premature treatment for early cardiac disease risk prediction.

    Synergy of Physics-based Reasoning and Machine Learning in Biomedical Applications: Towards Unlimited Deep Learning with Limited Data

    Get PDF
    Technological advancements enable collecting vast data, i.e., Big Data, in science and industry including biomedical field. Increased computational power allows expedient analysis of collected data using statistical and machine-learning approaches. Historical data incompleteness problem and curse of dimensionality diminish practical value of pure data-driven approaches, especially in biomedicine. Advancements in deep learning (DL) frameworks based on deep neural networks (DNN) improved accuracy in image recognition, natural language processing, and other applications yet severe data limitations and/or absence of transfer-learning-relevant problems drastically reduce advantages of DNN-based DL. Our earlier works demonstrate that hierarchical data representation can be alternatively implemented without NN, using boosting-like algorithms for utilization of existing domain knowledge, tolerating significant data incompleteness, and boosting accuracy of low-complexity models within the classifier ensemble, as illustrated in physiological-data analysis. Beyond obvious use in initial-factor selection, existing simplified models are effectively employed for generation of realistic synthetic data for later DNN pre-training. We review existing machine learning approaches, focusing on limitations caused by training-data incompleteness. We outline our hybrid framework that leverages existing domain-expert models/knowledge, boosting-like model combination, DNN-based DL and other machine learning algorithms for drastic reduction of training-data requirements. Applying this framework is illustrated in context of analyzing physiological data

    Baseline Assisted Classification of Heart Rate Variability

    Get PDF
    Recently, among various analysis methods of physiological signals, automatic analysis of Electrocardiogram (ECG) signals, especially heart rate variability (HRV) has received significant attention in the field of machine learning. Heart rate variability is an important indicator of health prediction and it is applicable to various fields of scientific research. Heart rate variability is based on measuring the differences in time between consecutive heartbeats (also known as RR interval), and the most common measuring techniques are divided into the time domain and frequency domain. In this research study, a classifier based on analysis of HRV signal is developed to classify different activities including sleep, exam, and exercise. The performance of the classifier is improved using a novel feature construction approach named as baseline assisted classifier. ECG data are collected from 39 subjects and RR intervals are derived from ECG data using Firstbeat analysis software to compute HRV metrics. These metrics are utilized as features in a logistic regression, SVM, decision tree, random forest classifiers. Performance of all classifiers is assessed by leave one person out cross-validation technique. Features are derived by statistical time domain method from HRV segmentation during 5-minutes recording. Using a combination of 5-minutes segmentation feature vector and 5-minutes segmentation feature vector of sleep record results in a median area under the receiver operating curve (AUC) of 88% for sleep and 74% for the exam on leave one person out cross-validation test set data by SVM classifier. These results demonstrate that adding a baseline feature vector of sleep data improves the classification accuracy and classification AUC accuracy of almost all classifiers from HRV measures, and tracking of activity can be achieved by measuring the HRV signal

    Artificial intelligence for clinical decision support for monitoring patients in cardiovascular ICUs: a systematic review

    Get PDF
    Background: Artificial intelligence (AI) and machine learning (ML) models continue to evolve the clinical decision support systems (CDSS). However, challenges arise when it comes to the integration of AI/ML into clinical scenarios. In this systematic review, we followed the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA), the population, intervention, comparator, outcome, and study design (PICOS), and the medical AI life cycle guidelines to investigate studies and tools which address AI/ML-based approaches towards clinical decision support (CDS) for monitoring cardiovascular patients in intensive care units (ICUs). We further discuss recent advances, pitfalls, and future perspectives towards effective integration of AI into routine practices as were identified and elaborated over an extensive selection process for state-of-the-art manuscripts. Methods: Studies with available English full text from PubMed and Google Scholar in the period from January 2018 to August 2022 were considered. The manuscripts were fetched through a combination of the search keywords including AI, ML, reinforcement learning (RL), deep learning, clinical decision support, and cardiovascular critical care and patients monitoring. The manuscripts were analyzed and filtered based on qualitative and quantitative criteria such as target population, proper study design, cross-validation, and risk of bias. Results: More than 100 queries over two medical search engines and subjective literature research were developed which identified 89 studies. After extensive assessments of the studies both technically and medically, 21 studies were selected for the final qualitative assessment. Discussion: Clinical time series and electronic health records (EHR) data were the most common input modalities, while methods such as gradient boosting, recurrent neural networks (RNNs) and RL were mostly used for the analysis. Seventy-five percent of the selected papers lacked validation against external datasets highlighting the generalizability issue. Also, interpretability of the AI decisions was identified as a central issue towards effective integration of AI in healthcare
    corecore