952 research outputs found

    The intersection of video capsule endoscopy and artificial intelligence: addressing unique challenges using machine learning

    Full text link
    Introduction: Technical burdens and time-intensive review processes limit the practical utility of video capsule endoscopy (VCE). Artificial intelligence (AI) is poised to address these limitations, but the intersection of AI and VCE reveals challenges that must first be overcome. We identified five challenges to address. Challenge #1: VCE data are stochastic and contains significant artifact. Challenge #2: VCE interpretation is cost-intensive. Challenge #3: VCE data are inherently imbalanced. Challenge #4: Existing VCE AIMLT are computationally cumbersome. Challenge #5: Clinicians are hesitant to accept AIMLT that cannot explain their process. Methods: An anatomic landmark detection model was used to test the application of convolutional neural networks (CNNs) to the task of classifying VCE data. We also created a tool that assists in expert annotation of VCE data. We then created more elaborate models using different approaches including a multi-frame approach, a CNN based on graph representation, and a few-shot approach based on meta-learning. Results: When used on full-length VCE footage, CNNs accurately identified anatomic landmarks (99.1%), with gradient weighted-class activation mapping showing the parts of each frame that the CNN used to make its decision. The graph CNN with weakly supervised learning (accuracy 89.9%, sensitivity of 91.1%), the few-shot model (accuracy 90.8%, precision 91.4%, sensitivity 90.9%), and the multi-frame model (accuracy 97.5%, precision 91.5%, sensitivity 94.8%) performed well. Discussion: Each of these five challenges is addressed, in part, by one of our AI-based models. Our goal of producing high performance using lightweight models that aim to improve clinician confidence was achieved

    Deep neural networks in the cloud: Review, applications, challenges and research directions

    Get PDF
    Deep neural networks (DNNs) are currently being deployed as machine learning technology in a wide range of important real-world applications. DNNs consist of a huge number of parameters that require millions of floating-point operations (FLOPs) to be executed both in learning and prediction modes. A more effective method is to implement DNNs in a cloud computing system equipped with centralized servers and data storage sub-systems with high-speed and high-performance computing capabilities. This paper presents an up-to-date survey on current state-of-the-art deployed DNNs for cloud computing. Various DNN complexities associated with different architectures are presented and discussed alongside the necessities of using cloud computing. We also present an extensive overview of different cloud computing platforms for the deployment of DNNs and discuss them in detail. Moreover, DNN applications already deployed in cloud computing systems are reviewed to demonstrate the advantages of using cloud computing for DNNs. The paper emphasizes the challenges of deploying DNNs in cloud computing systems and provides guidance on enhancing current and new deployments.The EGIA project (KK-2022/00119The Consolidated Research Group MATHMODE (IT1456-22

    Anatomical Classification of the Gastrointestinal Tract Using Ensemble Transfer Learning

    Get PDF
    Endoscopy is a procedure used to visualize disorders of the gastrointestinal (GI) lumen. GI disorders can occur without symptoms, which is why gastroenterologists often recommend routine examinations of the GI tract. It allows a doctor to directly visualize the inside of the GI tract and identify the cause of symptoms, reducing the need for exploratory surgery or other invasive procedures. It can also detect the early stages of GI disorders, such as cancer, enabling prompt treatment that can improve outcomes. Endoscopic examinations generate significant numbers of GI images. Because of this vast amount of endoscopic image data, relying solely on human interpretation can be problematic. Artificial intelligence is gaining popularity in clinical medicine. Assist in medical image analysis and early detection of diseases, help with personalized treatment planning by analyzing a patient’s medical history and genomic data, and be used by surgical robots to improve precision and reduce invasiveness. It enables automated diagnosis, provides physicians with assistance, and may improve performance. One of the significant challenges is defining the specific anatomic locations of GI tract abnormalities. Clinicians can then determine appropriate treatment options, reducing the need for repetitive endoscopy. Due to the difficulty of collecting annotated data, very limited research has been conducted on the localization of anatomical locations by classification of endoscopy images. In this study, we present a classification of GI tract anatomical localization based on transfer learning and ensemble learning. Our approach involves the use of an autoencoder and the Xception model. The autoencoder was initially trained on thousands of unlabeled images, and the encoder then separated and used as a feature extractor. The Xception model was also used as a second model to extract features from the input images. The extracted feature vectors were then concatenated and fed into a Convolutional Neural Network for classification. This combination of models provides a powerful and versatile solution for image classification. By using the encoder as a feature extractor that can transfer the learned knowledge, it is possible to improve learning by allowing the model to focus on more relevant and useful data, which is extremely valuable when there are not enough appropriately labelled data. On the other hand, the Xception model provides additional feature extraction capabilities. Sometimes, one classifier is not enough in machine learning, as it depends on the problem we are trying to solve and the quality and quantity of data available. With ensemble learning, multiple learning networks can work together to create a stronger classifier. The final classification results are obtained by combining the information from both models through the CNN model. This approach demonstrates the potential for combining multiple models to improve the accuracy of image classification tasks in the medical domain. The HyperKvasir dataset is the main dataset used in this study. It contains 4,104 labelled and 99,417 unlabeled images taken at six different locations in the GI tract, including the cecum, ileum, pylorus, rectum, stomach, and Z line. After dataset preprocessing, which includes noise deduction and similarity removal, 871 labelled images remained for the purpose of this study. Our method was more accurate than state-of-the-art studies and had a higher F1 score while categorizing the input images into six different anatomical locations with less than a thousand labelled images. According to the results, feature extraction and ensemble learning increase accuracy by 5%, and a comparison with existing methods using the same dataset indicate improved performance and reduced cross entropy loss. The proposed method can therefore be used in the classification of endoscopy images

    The gastrointestinal tract:From healthy mucosa to colorectal cancer

    Get PDF

    The gastrointestinal tract:From healthy mucosa to colorectal cancer

    Get PDF

    Barriers and Pitfalls for Artificial Intelligence in Gastroenterology: Ethical and Regulatory issues

    Get PDF
    Artificial intelligence (AI)-based technologies are developing rapidly, offering great promise for gastroenterology and particularly endoscopy. However, there are complex barriers and pitfalls that must be considered before widespread real-world clinical implementation can occur. This review highlights major ethical concerns related to data privacy and sharing that are essential for the development of AI models, through to practical clinical issues such as potential patient harm, accountability, bias in decisions, and impact on workforce. Finally, current regulatory pathways are discussed, recognizing that these need to evolve to deal with unique new challenges, such as the adaptive and rapidly iterative nature of AI-based technologies, while striking a balance between ensuring patient safety and promoting innovation

    Explainable artificial intelligence (XAI) in deep learning-based medical image analysis

    Full text link
    With an increase in deep learning-based methods, the call for explainability of such methods grows, especially in high-stakes decision making areas such as medical image analysis. This survey presents an overview of eXplainable Artificial Intelligence (XAI) used in deep learning-based medical image analysis. A framework of XAI criteria is introduced to classify deep learning-based medical image analysis methods. Papers on XAI techniques in medical image analysis are then surveyed and categorized according to the framework and according to anatomical location. The paper concludes with an outlook of future opportunities for XAI in medical image analysis.Comment: Submitted for publication. Comments welcome by email to first autho

    Surgical Data Science - from Concepts toward Clinical Translation

    Get PDF
    Recent developments in data science in general and machine learning in particular have transformed the way experts envision the future of surgery. Surgical Data Science (SDS) is a new research field that aims to improve the quality of interventional healthcare through the capture, organization, analysis and modeling of data. While an increasing number of data-driven approaches and clinical applications have been studied in the fields of radiological and clinical data science, translational success stories are still lacking in surgery. In this publication, we shed light on the underlying reasons and provide a roadmap for future advances in the field. Based on an international workshop involving leading researchers in the field of SDS, we review current practice, key achievements and initiatives as well as available standards and tools for a number of topics relevant to the field, namely (1) infrastructure for data acquisition, storage and access in the presence of regulatory constraints, (2) data annotation and sharing and (3) data analytics. We further complement this technical perspective with (4) a review of currently available SDS products and the translational progress from academia and (5) a roadmap for faster clinical translation and exploitation of the full potential of SDS, based on an international multi-round Delphi process
    corecore