6,168 research outputs found

    SACOC: A spectral-based ACO clustering algorithm

    Get PDF
    The application of ACO-based algorithms in data mining is growing over the last few years and several supervised and unsupervised learning algorithms have been developed using this bio-inspired approach. Most recent works concerning unsupervised learning have been focused on clustering, where ACO-based techniques have showed a great potential. At the same time, new clustering techniques that seek the continuity of data, specially focused on spectral-based approaches in opposition to classical centroid-based approaches, have attracted an increasing research interest–an area still under study by ACO clustering techniques. This work presents a hybrid spectral-based ACO clustering algorithm inspired by the ACO Clustering (ACOC) algorithm. The proposed approach combines ACOC with the spectral Laplacian to generate a new search space for the algorithm in order to obtain more promising solutions. The new algorithm, called SACOC, has been compared against well-known algorithms (K-means and Spectral Clustering) and with ACOC. The experiments measure the accuracy of the algorithm for both synthetic datasets and real-world datasets extracted from the UCI Machine Learning Repository

    MACOC: a medoid-based ACO clustering algorithm

    Get PDF
    The application of ACO-based algorithms in data mining is growing over the last few years and several supervised and unsupervised learning algorithms have been developed using this bio-inspired approach. Most recent works concerning unsupervised learning have been focused on clustering, showing great potential of ACO-based techniques. This work presents an ACO-based clustering algorithm inspired by the ACO Clustering (ACOC) algorithm. The proposed approach restructures ACOC from a centroid-based technique to a medoid-based technique, where the properties of the search space are not necessarily known. Instead, it only relies on the information about the distances amongst data. The new algorithm, called MACOC, has been compared against well-known algorithms (K-means and Partition Around Medoids) and with ACOC. The experiments measure the accuracy of the algorithm for both synthetic datasets and real-world datasets extracted from the UCI Machine Learning Repository

    Medoid-based clustering using ant colony optimization

    Get PDF
    The application of ACO-based algorithms in data mining has been growing over the last few years, and several supervised and unsupervised learning algorithms have been developed using this bio-inspired approach. Most recent works about unsupervised learning have focused on clustering, showing the potential of ACO-based techniques. However, there are still clustering areas that are almost unexplored using these techniques, such as medoid-based clustering. Medoid-based clustering methods are helpful—compared to classical centroid-based techniques—when centroids cannot be easily defined. This paper proposes two medoid-based ACO clustering algorithms, where the only information needed is the distance between data: one algorithm that uses an ACO procedure to determine an optimal medoid set (METACOC algorithm) and another algorithm that uses an automatic selection of the number of clusters (METACOC-K algorithm). The proposed algorithms are compared against classical clustering approaches using synthetic and real-world datasets

    Medoid-based clustering using ant colony optimization

    Get PDF
    The application of ACO-based algorithms in data mining has been growing over the last few years, and several supervised and unsupervised learning algorithms have been developed using this bio-inspired approach. Most recent works about unsupervised learning have focused on clustering, showing the potential of ACO-based techniques. However, there are still clustering areas that are almost unexplored using these techniques, such as medoid-based clustering. Medoid-based clustering methods are helpful—compared to classical centroid-based techniques—when centroids cannot be easily defined. This paper proposes two medoid-based ACO clustering algorithms, where the only information needed is the distance between data: one algorithm that uses an ACO procedure to determine an optimal medoid set (METACOC algorithm) and another algorithm that uses an automatic selection of the number of clusters (METACOC-K algorithm). The proposed algorithms are compared against classical clustering approaches using synthetic and real-world datasets

    Improvement of Fuzzy Geographically Weighted Clustering-Ant Colony Optimization Performance using Context-Based Clustering and CUDA Parallel Programming

    Get PDF
    Geo-demographic analysis (GDA) is the study of population characteristics by geographical area. Fuzzy Geographically Weighted Clustering (FGWC) is an effective algorithm used in GDA. Improvement of FGWC has been done by integrating a metaheuristic algorithm, Ant Colony Optimization (ACO), as a global optimization tool to increase the clustering accuracy in the initial stage of the FGWC algorithm. However, using ACO in FGWC increases the time to run the algorithm compared to the standard FGWC algorithm. In this paper, context-based clustering and CUDA parallel programming are proposed to improve the performance of the improved algorithm (FGWC-ACO). Context-based clustering is a method that focuses on the grouping of data based on certain conditions, while CUDA parallel programming is a method that uses the graphical processing unit (GPU) as a parallel processing tool. The Indonesian Population Census 2010 was used as the experimental dataset. It was shown that the proposed methods were able to improve the performance of FGWC-ACO without reducing the clustering quality of the original method. The clustering quality was evaluated using the clustering validity index

    A hierarchical approach to improve the ant colony optimization algorith

    Get PDF
    The ant colony optimization algorithm (ACO) is a fast heuristic-based method for finding favorable solutions to the traveling salesman problem (TSP). When the data set reaches larger values however, the ACO runtime increases dramatically. As a result, clustering nodes into groups is an effective way to reduce the size of the problem while leveraging the advantages of the ACO algorithm. The method for recombining groups of nodes is explored by treating the graph as a hierarchy of clusters, and modifying the original ACO heuristic to operate on a hypergraph. This method of using hierarchical clustering is significantly faster than the original ACO algorithm, even when normal clustering techniques are applied, while producing improved tour lengths

    Extending the SACOC algorithm through the Nystrom method for dense manifold data analysis

    Get PDF
    Data analysis has become an important field over the last decades. The growing amount of data demands new analytical methodologies in order to extract relevant knowledge. Clustering is one of the most competitive techniques in this context.Using a dataset as a starting point, these techniques aim to blindly group the data by similarity. Among the different areas, manifold identification is currently gaining importance. Spectral-based methods, which are the mostly used methodologies in this area, are however sensitive to metric parameters and noise. In order to solve these problems, new bio-inspired techniques have been combined with different heuristics to perform the clustering solutions and stability, specially for dense datasets. Ant Colony Optimization (ACO) is one of these new bio-inspired methodologies. This paper presents an extension of a previous algorithm named Spectral-based ACO Clustering (SACOC). SACOC is a spectral-based clustering methodology used for manifold identification. This work is focused on improving this algorithm through the Nystrom extension. The new algorithm, named SACON, is able to deal with Dense Data problems.We have evaluated the performance of this new approach comparing it with online clustering algorithms and the Nystrom extension of the Spectral Clustering algorithm using several datasets

    Hybrid Swarm Intelligence Energy Efficient Clustered Routing Algorithm for Wireless Sensor Networks

    Get PDF
    Currently, wireless sensor networks (WSNs) are used in many applications, namely, environment monitoring, disaster management, industrial automation, and medical electronics. Sensor nodes carry many limitations like low battery life, small memory space, and limited computing capability. To create a wireless sensor network more energy efficient, swarm intelligence technique has been applied to resolve many optimization issues in WSNs. In many existing clustering techniques an artificial bee colony (ABC) algorithm is utilized to collect information from the field periodically. Nevertheless, in the event based applications, an ant colony optimization (ACO) is a good solution to enhance the network lifespan. In this paper, we combine both algorithms (i.e., ABC and ACO) and propose a new hybrid ABCACO algorithm to solve a Nondeterministic Polynomial (NP) hard and finite problem of WSNs. ABCACO algorithm is divided into three main parts: (i) selection of optimal number of subregions and further subregion parts, (ii) cluster head selection using ABC algorithm, and (iii) efficient data transmission using ACO algorithm. We use a hierarchical clustering technique for data transmission; the data is transmitted from member nodes to the subcluster heads and then from subcluster heads to the elected cluster heads based on some threshold value. Cluster heads use an ACO algorithm to discover the best route for data transmission to the base station (BS). The proposed approach is very useful in designing the framework for forest fire detection and monitoring. The simulation results show that the ABCACO algorithm enhances the stability period by 60% and also improves the goodput by 31% against LEACH and WSNCABC, respectively

    A Modified ACO-based Search Algorithm for Detecting Protein Functional Module From Protein Interaction Network

    Get PDF
    Recent high-throughput experiments have generated protein-protein interaction data on a genomic scale, yielding the complete protein-protein interaction network for several organisms. Various graph clustering algorithms have been applied to protein interaction networks for detecting protein functional modules. Although the previous algorithms are scalable and robust, their accuracy is still limited because of the complex connectivity found in protein interaction networks. The Ant Colony Optimization (ACO) Algorithm has been adapted for the protein functional module detection by modeling the problem as an optimization problem. The adapted ACO (ACO-PFMDA) has obtained feasible solution but not as magnificent as those reported in the literature. Some shortcomings were identified and addressed by proposing a Modified Ant Colony Optimization Algorithm (ACO-PFMDM), which introduces two new scheme for controlling the two main parameters of ACO to solve PFMDP. Experiments on one popular benchmark dataset namely "Saccharomyces cerevisiae" which taken from two popular databases DIP and MIPS has been performed. The experimental result have proved that ACO-PFMDM have improved the overall performance of protein functional module detection. The search process of ACO-PFMDM has converged effectively compared to some state-of-art algorithms. Moreover, the proposed dynamic update of the heuristic parameters based on entropy has generated high quality tours and it can guide ants toward the effective solutions space in the initial search stages
    • …
    corecore