15,867 research outputs found

    Rationale in Development Chat Messages: An Exploratory Study

    Full text link
    Chat messages of development teams play an increasingly significant role in software development, having replaced emails in some cases. Chat messages contain information about discussed issues, considered alternatives and argumentation leading to the decisions made during software development. These elements, defined as rationale, are invaluable during software evolution for documenting and reusing development knowledge. Rationale is also essential for coping with changes and for effective maintenance of the software system. However, exploiting the rationale hidden in the chat messages is challenging due to the high volume of unstructured messages covering a wide range of topics. This work presents the results of an exploratory study examining the frequency of rationale in chat messages, the completeness of the available rationale and the potential of automatic techniques for rationale extraction. For this purpose, we apply content analysis and machine learning techniques on more than 8,700 chat messages from three software development projects. Our results show that chat messages are a rich source of rationale and that machine learning is a promising technique for detecting rationale and identifying different rationale elements.Comment: 11 pages, 6 figures. The 14th International Conference on Mining Software Repositories (MSR'17

    ICE: Enabling Non-Experts to Build Models Interactively for Large-Scale Lopsided Problems

    Full text link
    Quick interaction between a human teacher and a learning machine presents numerous benefits and challenges when working with web-scale data. The human teacher guides the machine towards accomplishing the task of interest. The learning machine leverages big data to find examples that maximize the training value of its interaction with the teacher. When the teacher is restricted to labeling examples selected by the machine, this problem is an instance of active learning. When the teacher can provide additional information to the machine (e.g., suggestions on what examples or predictive features should be used) as the learning task progresses, then the problem becomes one of interactive learning. To accommodate the two-way communication channel needed for efficient interactive learning, the teacher and the machine need an environment that supports an interaction language. The machine can access, process, and summarize more examples than the teacher can see in a lifetime. Based on the machine's output, the teacher can revise the definition of the task or make it more precise. Both the teacher and the machine continuously learn and benefit from the interaction. We have built a platform to (1) produce valuable and deployable models and (2) support research on both the machine learning and user interface challenges of the interactive learning problem. The platform relies on a dedicated, low-latency, distributed, in-memory architecture that allows us to construct web-scale learning machines with quick interaction speed. The purpose of this paper is to describe this architecture and demonstrate how it supports our research efforts. Preliminary results are presented as illustrations of the architecture but are not the primary focus of the paper

    Proceedings of the 2nd Computer Science Student Workshop: Microsoft Istanbul, Turkey, April 9, 2011

    Get PDF

    Going Deeper with Convolutions

    Full text link
    We propose a deep convolutional neural network architecture codenamed "Inception", which was responsible for setting the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC 2014). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. This was achieved by a carefully crafted design that allows for increasing the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC 2014 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection
    corecore