3,048 research outputs found

    An hp-adaptivity and error estimation for hyperbolic conservation laws

    Get PDF
    This paper presents an hp-adaptive discontinuous Galerkin method for linear hyperbolic conservation laws. A priori and a posteriori error estimates are derived in mesh-dependent norms which reflect the dependence of the approximate solution on the element size (h) and the degree (p) of the local polynomial approximation. The a posteriori error estimate, based on the element residual method, provides bounds on the actual global error in the approximate solution. The adaptive strategy is designed to deliver an approximate solution with the specified level of error in three steps. The a posteriori estimate is used to assess the accuracy of a given approximate solution and the a priori estimate is used to predict the mesh refinements and polynomial enrichment needed to deliver the desired solution. Numerical examples demonstrate the reliability of the a posteriori error estimates and the effectiveness of the hp-adaptive strategy

    Error representation of the time-marching DPG scheme

    Get PDF
    In this article, we introduce an error representation function to perform adaptivity in time of the recently developed time-marching Discontinuous Petrov–Galerkin (DPG) scheme. We first provide an analytical expression for the error that is the Riesz representation of the residual. Then, we approximate the error by enriching the test space in such a way that it contains the optimal test functions. The local error contributions can be efficiently computed by adding a few equations to the time-marching scheme. We analyze the quality of such approximation by constructing a Fortin operator and providing an a posteriori error estimate. The time-marching scheme proposed in this article provides an optimal solution along with a set of efficient and reliable local error contributions to perform adaptivity. We validate our method for both parabolic and hyperbolic problems

    A posteriori error control for discontinuous Galerkin methods for parabolic problems

    Full text link
    We derive energy-norm a posteriori error bounds for an Euler time-stepping method combined with various spatial discontinuous Galerkin schemes for linear parabolic problems. For accessibility, we address first the spatially semidiscrete case, and then move to the fully discrete scheme by introducing the implicit Euler time-stepping. All results are presented in an abstract setting and then illustrated with particular applications. This enables the error bounds to hold for a variety of discontinuous Galerkin methods, provided that energy-norm a posteriori error bounds for the corresponding elliptic problem are available. To illustrate the method, we apply it to the interior penalty discontinuous Galerkin method, which requires the derivation of novel a posteriori error bounds. For the analysis of the time-dependent problems we use the elliptic reconstruction technique and we deal with the nonconforming part of the error by deriving appropriate computable a posteriori bounds for it.Comment: 6 figure

    Error estimation and adaptive moment hierarchies for goal-oriented approximations of the Boltzmann equation

    Full text link
    This paper presents an a-posteriori goal-oriented error analysis for a numerical approximation of the steady Boltzmann equation based on a moment-system approximation in velocity dependence and a discontinuous Galerkin finite-element (DGFE) approximation in position dependence. We derive computable error estimates and bounds for general target functionals of solutions of the steady Boltzmann equation based on the DGFE moment approximation. The a-posteriori error estimates and bounds are used to guide a model adaptive algorithm for optimal approximations of the goal functional in question. We present results for one-dimensional heat transfer and shock structure problems where the moment model order is refined locally in space for optimal approximation of the heat flux.Comment: arXiv admin note: text overlap with arXiv:1602.0131

    Fully computable a posteriori error bounds for hybridizable discontinuous Galerkin finite element approximations

    Get PDF
    We derive a posteriori error estimates for the hybridizable discontinuous Galerkin (HDG) methods, including both the primal and mixed formulations, for the approximation of a linear second-order elliptic problem on conforming simplicial meshes in two and three dimensions. We obtain fully computable, constant free, a posteriori error bounds on the broken energy seminorm and the HDG energy (semi)norm of the error. The estimators are also shown to provide local lower bounds for the HDG energy (semi)norm of the error up to a constant and a higher-order data oscillation term. For the primal HDG methods and mixed HDG methods with an appropriate choice of stabilization parameter, the estimators are also shown to provide a lower bound for the broken energy seminorm of the error up to a constant and a higher-order data oscillation term. Numerical examples are given illustrating the theoretical results

    The Discontinuous Galerkin Finite Element Method for Ordinary Differential Equations

    Get PDF
    We present an analysis of the discontinuous Galerkin (DG) finite element method for nonlinear ordinary differential equations (ODEs). We prove that the DG solution is (p+1)(p + 1) th order convergent in the L2L^2-norm, when the space of piecewise polynomials of degree pp is used. A (2p+1) (2p+1) th order superconvergence rate of the DG approximation at the downwind point of each element is obtained under quasi-uniform meshes. Moreover, we prove that the DG solution is superconvergent with order p+2p+2 to a particular projection of the exact solution. The superconvergence results are used to show that the leading term of the DG error is proportional to the (p+1) (p + 1) -degree right Radau polynomial. These results allow us to develop a residual-based a posteriori error estimator which is computationally simple, efficient, and asymptotically exact. The proposed a posteriori error estimator is proved to converge to the actual error in the L2L^2-norm with order p+2p+2. Computational results indicate that the theoretical orders of convergence are optimal. Finally, a local adaptive mesh refinement procedure that makes use of our local a posteriori error estimate is also presented. Several numerical examples are provided to illustrate the global superconvergence results and the convergence of the proposed estimator under mesh refinement
    • …
    corecore