64 research outputs found

    RF Power Transfer, Energy Harvesting, and Power Management Strategies

    Get PDF
    Energy harvesting is the way to capture green energy. This can be thought of as a recycling process where energy is converted from one form (here, non-electrical) to another (here, electrical). This is done on the large energy scale as well as low energy scale. The former can enable sustainable operation of facilities, while the latter can have a significant impact on the problems of energy constrained portable applications. Different energy sources can be complementary to one another and combining multiple-source is of great importance. In particular, RF energy harvesting is a natural choice for the portable applications. There are many advantages, such as cordless operation and light-weight. Moreover, the needed infra-structure can possibly be incorporated with wearable and portable devices. RF energy harvesting is an enabling key player for Internet of Things technology. The RF energy harvesting systems consist of external antennas, LC matching networks, RF rectifiers for ac to dc conversion, and sometimes power management. Moreover, combining different energy harvesting sources is essential for robustness and sustainability. Wireless power transfer has recently been applied for battery charging of portable devices. This charging process impacts the daily experience of every human who uses electronic applications. Instead of having many types of cumbersome cords and many different standards while the users are responsible to connect periodically to ac outlets, the new approach is to have the transmitters ready in the near region and can transfer power wirelessly to the devices whenever needed. Wireless power transfer consists of a dc to ac conversion transmitter, coupled inductors between transmitter and receiver, and an ac to dc conversion receiver. Alternative far field operation is still tested for health issues. So, the focus in this study is on near field. The goals of this study are to investigate the possibilities of RF energy harvesting from various sources in the far field, dc energy combining, wireless power transfer in the near field, the underlying power management strategies, and the integration on silicon. This integration is the ultimate goal for cheap solutions to enable the technology for broader use. All systems were designed, implemented and tested to demonstrate proof-of concept prototypes

    Re-thinking Analog Integrated Circuits in Digital Terms: A New Design Concept for the IoT Era

    Get PDF
    A steady trend towards the design of mostly-digital and digital-friendly analog circuits, suitable to integration in mainstream nanoscale CMOS by a highly automated design flow, has been observed in the last years to address the requirements of the emerging Internet of Things (IoT) applications. In this context, this tutorial brief presents an overview of concepts and design methodologies that emerged in the last decade, aimed to the implementation of analog circuits like Operational Transconductance Amplifiers, Voltage References and Data Converters by digital circuits. The current design challenges and application scenarios as well as the future perspectives and opportunities in the field of digital-based analog processing are finally discussed

    Harnessing energy for wearables: a review of radio frequency energy harvesting technologies

    Get PDF
    Wireless energy harvesting enables the conversion of ambient energy into electrical power for small wireless electronic devices. This technology offers numerous advantages, including availability, ease of implementation, wireless functionality, and cost-effectiveness. Radio frequency energy harvesting (RFEH) is a specific type of wireless energy harvesting that enables wireless power transfer by utilizing RF signals. RFEH holds immense potential for extending the lifespan of wireless sensors and wearable electronics that require low-power operation. However, despite significant advancements in RFEH technology for self-sustainable wearable devices, numerous challenges persist. This literature review focuses on three key areas: materials, antenna design, and power management, to delve into the research challenges of RFEH comprehensively. By providing an up-to-date review of research findings on RFEH, this review aims to shed light on the critical challenges, potential opportunities, and existing limitations. Moreover, it emphasizes the importance of further research and development in RFEH to advance its state-of-the-art and offer a vision for future trends in this technology

    Wind energy harvester interface for sensor nodes

    Get PDF
    The research topic is developping a power converting interface for the novel FLEHAP wind energy harvester allowing the produced energy to be used for powering small wireless nodes. The harvester\u2019s electrical characteristics were studied and a strategy was developped to control and mainting a maximum power transfer. The electronic power converter interface was designed, containing an AC/DC Buck-Boost converter and controlled with a low power microcontroller. Different prototypes were developped that evolved by reducing the sources of power loss and rendering the system more efficient. The validation of the system was done through simulations in the COSMIC/DITEN lab using generated signals, and then follow-up experiments were conducted with a controllable wind tunnel in the DIFI department University of Genoa. The experiment results proved the functionality of the control algorithm as well as the efficiency that was ramped up by the hardware solutions that were implemented, and generally met the requirement to provide a power source for low-power sensor nodes

    Next-generation IoT devices: sustainable eco-friendly manufacturing, energy harvesting, and wireless connectivity

    Get PDF
    This invited paper presents potential solutions for tackling some of the main underlying challenges toward developing sustainable Internet-of-things (IoT) devices with a focus on eco-friendly manufacturing, sustainable powering, and wireless connectivity for next-generation IoT devices. The diverse applications of IoT systems, such as smart cities, wearable devices, self-driving cars, and industrial automation, are driving up the number of IoT systems at an unprecedented rate. In recent years, the rapidly-increasing number of IoT devices and the diverse application-specific system requirements have resulted in a paradigm shift in manufacturing processes, powering methods, and wireless connectivity solutions. The traditional cloud-centering IoT systems are moving toward distributed intelligence schemes that impose strict requirements on IoT devices, e.g., operating range, latency, and reliability. In this article, we provide an overview of hardware-related research trends and application use cases of emerging IoT systems and highlight the enabling technologies of next-generation IoT. We review eco-friendly manufacturing for next-generation IoT devices, present alternative biodegradable and eco-friendly options to replace existing materials, and discuss sustainable powering IoT devices by exploiting energy harvesting and wireless power transfer. Finally, we present (ultra-)low-power wireless connectivity solutions that meet the stringent energy efficiency and data rate requirements of future IoT systems that are compatible with a batteryless operation

    Digital-Based Analog Processing in Nanoscale CMOS ICs for IoT Applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Power Management ICs for Internet of Things, Energy Harvesting and Biomedical Devices

    Get PDF
    This dissertation focuses on the power management unit (PMU) and integrated circuits (ICs) for the internet of things (IoT), energy harvesting and biomedical devices. Three monolithic power harvesting methods are studied for different challenges of smart nodes of IoT networks. Firstly, we propose that an impedance tuning approach is implemented with a capacitor value modulation to eliminate the quiescent power consumption. Secondly, we develop a hill-climbing MPPT mechanism that reuses and processes the information of the hysteresis controller in the time-domain and is free of power hungry analog circuits. Furthermore, the typical power-performance tradeoff of the hysteresis controller is solved by a self-triggered one-shot mechanism. Thus, the output regulation achieves high-performance and yet low-power operations as low as 12 µW. Thirdly, we introduce a reconfigurable charge pump to provide the hybrid conversion ratios (CRs) as 1⅓× up to 8× for minimizing the charge redistribution loss. The reconfigurable feature also dynamically tunes to maximum power point tracking (MPPT) with the frequency modulation, resulting in a two-dimensional MPPT. Therefore, the voltage conversion efficiency (VCE) and the power conversion efficiency (PCE) are enhanced and flattened across a wide harvesting range as 0.45 to 3 V. In a conclusion, we successfully develop an energy harvesting method for the IoT smart nodes with lower cost, smaller size, higher conversion efficiency, and better applicability. For the biomedical devices, this dissertation presents a novel cost-effective automatic resonance tracking method with maximum power transfer (MPT) for piezoelectric transducers (PT). The proposed tracking method is based on a band-pass filter (BPF) oscillator, exploiting the PT’s intrinsic resonance point through a sensing bridge. It guarantees automatic resonance tracking and maximum electrical power converted into mechanical motion regardless of process variations and environmental interferences. Thus, the proposed BPF oscillator-based scheme was designed for an ultrasonic vessel sealing and dissecting (UVSD) system. The sealing and dissecting functions were verified experimentally in chicken tissue and glycerin. Furthermore, a combined sensing scheme circuit allows multiple surgical tissue debulking, vessel sealer and dissector (VSD) technologies to operate from the same sensing scheme board. Its advantage is that a single driver controller could be used for both systems simplifying the complexity and design cost. In a conclusion, we successfully develop an ultrasonic scalpel to replace the other electrosurgical counterparts and the conventional scalpels with lower cost and better functionality

    High Efficiency Low Power Rectifiers and ZVS DC to DC Converters for RF Energy Harvesting

    Get PDF
    In recent years, advancements in modern technologies have grown the demand for low-power wireless devices. Considering that enhancing the lifetime of the required battery to maintain the operation of these devices is still impractical, harvesting energy from ambient sources has become a promising solution to power portable low power electronic devices. Harvesting ambient energy from the electromagnetic wave (EM), which is referred to as radio frequency energy harvesting (RFEH), is one of the most popular power extracting methods. Scavenging energy can be used to fully supply the power required for wearable electronics devices, RFID, medical implantable devices, wireless sensors, internet of things (IoT) etc. RF energy is readily available in urban environments due to the abundant existence of HF and UHF technologies. Therefore, there is a great interest in studying systems working in UHF bands, including 300MHz to 3GHz frequencies. Radio frequency energy harvesting is a method which converts the received signals into electricity. This technique offers various environmentally friendly alternative energy sources. Specifically, RFEH has interesting attributes that make it very practical for low-power electronics and wireless sensor networks (WSNs). Ambient RF energy can be provided by commercial RF broadcasting stations such as Wi-Fi, GSM, radar or TV. In this study, particular attention is given to design efficient low power circuits suitable to be applied for RFEH as a green technology, which is very suitable for overcoming problems such as powering wireless sensors located in inaccessible places or harsh environments, the possibility to power directly electronic devices, recharge batteries and etc. In RFEH, it is very important to enhance the efficiency of the circuits and systems to maximize the amount of harvested energy. This thesis is mainly concerned with the design, simulation, and implementation of AC to DC circuits including phase shifter, rectifier, and DC to DC converter which is specifically designed for RFEH. It can be applied in various applications such as telecommunications, wireless sensors, medical devices, wireless charging, Internet of Things (IoT) and etc. In the designed system in this thesis, the signal must be passed through a phase shifter, rectifier, and voltage multiplier to reach the required level of output voltage. In another word, this system rectifies the sinusoidal AC waveform to DC and multiplies it to get higher voltages. In this thesis, we propose 1 and 7-stage rectifiers, phase shifters and isolated/non-isolated DC to DC converters will be investigated individually in a general manner and integrated together to have the desired range of outputs for considered applications. This research methodology has three major phases: Phase 1: Theoretical analyses, Phase 2: Simulation investigations and Phase 3: Practical verification. This thesis presents a review on the history of different circuits used to design a low power system for EH. Certain achievements in recent decades make power harvesting a reality, capable of providing alternative sources of energy for a wider range of applications. This review provides a summary of RFEH technologies to use as a guide for the design of RFEH units. Additionally, comprehensive analysis and discussions of various designs of rectifiers, isolated and non-isolated DC to DC converters and phase shifters in addition to their trade-offs for RF energy harvesting purposes are included. In this thesis, novel designs of Dickson rectifiers with high voltage gain and efficiency operating with an input frequency of 915MHz is presented. The proposed circuits introduce a new method of deriving output characteristics of rectification circuit in terms of voltage. The design consists of different stages of the Dickson voltage multiplier. The rectifiers benefit from two input AC sources with 180° phase shift. This Dickson circuit is further discussed in two levels; the first one is a 1-stage rectifier operating with Schottky diodes or diode-connected MOSFETs, and the second is a 7-stage rectifier discussed with both Schottky diodes and diode-connected MOSFETs producing higher output voltages. Furthermore, the prototype of 1-stage rectifier is presented where the input voltage is between -10dBm and 2dBm and the output voltage gained is from 318mV to 1700mV, respectively. Also, the prototype of 7-stage rectifier is presented where the input voltage is -10dBm, -8dBm and -6dBm and the output voltage is gained 1220mV, 1330mV and 1550mV, respectively. Additionally, a new non-isolated high voltage gain, high efficiency zero voltage switching (ZVS) resonant DC to DC converter working under ZVS condition is introduced, which can work in high frequencies with high power conversion rate as well as low losses. The proposed converter can provide 5V output from 350mV input voltage with efficiency of 72.8%. Furthermore, we proposed an isolated DC to DC converter which provides the output voltage of 6V with efficiency of 68%. Due to have an isolation transformer, this converter prevents electric shocks which makes it suitable for applications requiring more safety. All the theoretical analyses are verified by MATLAB and circuits are simulated in PSIM. In addition, two combinations of high voltage gain circuits are introduced for low power applications such as RFEH. The first combination consists of a phase shifter, 1-stage rectifier and resonant ZVS DC to DC converter which has an output voltage of 6V with an efficiency of 71%. The second consists of a phase shifter, 1-stage rectifier and isolated resonant ZVS DC to DC converter with output voltage and efficiency of 5V and 65%, respectively. In conclusion, this thesis is presented in 6 chapters discussing the designed high voltage gain high efficiency low power circuits to convert AC input with frequency of 915MHz to DC output. The circuits can be applied in different low power applications such as energy harvesting systems specifically RFEH

    Power Management Techniques for Supercapacitor Based IoT Applications

    Get PDF
    University of Minnesota Ph.D. dissertation. January 2018. Major: Electrical Engineering. Advisor: Ramesh Harjani. 1 computer file (PDF); xi, 89 pages.The emerging internet of things (IoT) technology will connect many untethered devices, e.g. sensors, RFIDs and wearable devices, to improve health lifestyle, automotive, smart buildings, etc. This thesis proposes one typical application of IoT: RFID for blood temperature monitoring. Once the blood is donated and sealed in a blood bag, it is required to be stored in a certain temperature range (+2~+6°C for red cell component) before distribution. The proposed RFID tag is intended to be attached to the blood bag and continuously monitor the environmental temperature during transportation and storage. When a reader approaches, the temperature data is read out and the tag is fully recharged wirelessly within 2 minutes. Once the blood is distributed, the tag can be reset and reused again. Such a biomedical application has a strong aversion to toxic chemicals, so a batteryless design is required for the RFID tag. A passive RFID tag, however, cannot meet the longevity requirement for the monitoring system (at least 1 week). The solution of this thesis is using a supercapacitor (supercap) instead of a battery as the power supply, which not only lacks toxic heavy metals, but also has quicker charge time (~1000x over batteries), larger operating temperature range (-40~+65°C), and nearly infinite shelf life. Although nearly perfect for this RFID application, a supercap has its own disadvantages: lower energy density (~30x smaller than batteries) and unstable output voltage. To solve the quick charging and long lasting requirements of the RFID system, and to overcome the intrinsic disadvantages of supercaps, an overall power management solution is proposed in this thesis. A reconfigurable switched-capacitor DC-DC converter is proposed to convert the unstable supercap's voltage (3.5V~0.5V) to a stable 1V output voltage efficiently to power the subsequent circuits. With the help of the 6 conversion ratios (3 step-ups, 3 step-downs), voltage protection techniques, and low power designs, the converter can extract 98% of the stored energy from the supercap, and increase initial energy by 96%. Another switched-inductor buck-boost converter is designed to harvest the ambient RF energy to charge the supercap quickly. Because of the variation of the reader distance and incident wave angle, the input power level also has large fluctuation (5uW~5mW). The harvester handles this large power range by a power estimator enhanced MPPT controller with an adaptive integration capacitor array. Also, the contradiction between low power and high tracking speed is improved by adaptive MPPT frequency
    • …
    corecore