156 research outputs found

    Estimation of signal parameters in the frequency domain in the presence of harmonic interference: a comparative analysis

    Get PDF
    In this paper, a novel method for the estimation of the parameters of the spectral components of a signal, also in the case of harmonic interference, is characterized and compared to other methods proposed in literature. The comparison criteria include the evaluation of residual errors and uncertainties on estimated parameters for different multicomponent signals

    Contribution of an interharmonic component to the sine- wave parameters estimators returned by the interpolated Discrete Fourier transform algorithm

    Get PDF
    This article investigates the contribution of a small-amplitude interharmonic component to the sine-wave parameter estimators returned by the classical interpolated discrete Fourier transform (IpDFT) algorithm. The analytical expressions for the frequency, amplitude, and phase estimation errors are derived herein by considering the IpDFT algorithm based on the maximum sidelobe decay (MSD) windows and by assuming the interharmonic frequency located at least one bin apart the unknown sine-wave frequency. The derived expressions allow us to analyse the impact of an interharmonic on the accuracies of the IpDFT frequency, amplitude, and phase estimators. The accuracies of the derived expressions are verified by means of both computer simulations and experimental results.</p

    Non-Parametric Estimation of the Periodic Signal Parameters in the Frequency Domain

    Get PDF

    Investigation of Non-coherent Discrete Target Range Estimation Techniques for High-precision Location

    Get PDF
    Ranging is an essential and crucial task for radar systems. How to solve the range-detection problem effectively and precisely is massively important. Meanwhile, unambiguity and high resolution are the points of interest as well. Coherent and non-coherent techniques can be applied to achieve range estimation, and both of them have advantages and disadvantages. Coherent estimates offer higher precision but are more vulnerable to noise and clutter and phase wrap errors, particularly in a complex or harsh environment, while the non-coherent approaches are simpler but provide lower precision. With the purpose of mitigating inaccuracy and perturbation in range estimation, miscellaneous techniques are employed to achieve optimally precise detection. Numerous elegant processing solutions stemming from non-coherent estimate are now introduced into the coherent realm, and vice versa. This thesis describes two non-coherent ranging estimate techniques with novel algorithms to mitigate the instinct deficit of non-coherent ranging approaches. One technique is based on peak detection and realised by Kth-order Polynomial Interpolation, while another is based on Z-transform and realised by Most-likelihood Chirp Z-transform. A two-stage approach for the fine ranging estimate is applied to the Discrete Fourier transform domain of both algorithms. An N-point Discrete Fourier transform is implemented to attain a coarse estimation; an accurate process around the point of interest determined in the first stage is conducted. For KPI technique, it interpolates around the peak of Discrete Fourier transform profiles of the chirp signal to achieve accurate interpolation and optimum precision. For Most-likelihood Chirp Z-transform technique, the Chirp Z-transform accurately implements the periodogram where only a narrow band spectrum is processed. Furthermore, the concept of most-likelihood estimator is introduced to combine with Chirp Z-transform to acquire better ranging performance. Cramer-Rao lower bound is presented to evaluate the performance of these two techniques from the perspective of statistical signal processing. Mathematical derivation, simulation modelling, theoretical analysis and experimental validation are conducted to assess technique performance. Further research will be pushed forward to algorithm optimisation and system development of a location system using non-coherent techniques and make a comparison to a coherent approach

    Spectral correction method based on improved flat-top convoluted window for parameter estimation of power harmonic

    Get PDF
    Točna procjena harmonijskog parametra je važan zadatak u obradi signala elektroenergetskog sustava. Predlaže se nova vrsta flat-top prozora koja se generira vlastitim konvolucijama brzo padajućeg flat-top prozora (FDMS-FT) u domenu vremena. Proučavaju se značajke bočnog i glavnog režnja novog prozora. Nadalje, kako bi se poboljšala glatkoća glavnog režnja novog prozora, optimiziraju se koeficijenti matičnog prozora. Predstavlja se izmjenjivi algoritam ispravke razlike faze duljine prozora baziran na novom prozoru kako bi se procijenio strujni harmonični parametar. Kako bi se provjerila učinkovitost i točnost prikazane metode, provedeno je nekoliko računalnih simulacija i praktičnih eksperimenata s višefrekvencijskim strujnim signalima. Rezultati pokazuju da predložena metoda može učinkovito smanjiti opseg računanja i daje visok parametar točnosti procjene harmonijske snage.Accurate estimation of harmonic parameter is an important task in signal processing of power system. A new class of flat-top windows is proposed, which is generated by self-convolutions of the fast-decaying minimum-sidelobe flat-top (FDMS-FT) window in the time-domain. The mainlobe and sidelobe features of the new window are studied. In addition, to improve the flatness of mainlobe of the new window, the coefficients of its parent window are optimized. A window-length changeable discrete phase difference correction algorithm based on the new window is presented to estimate power harmonic parameter. In order to inspect the efficiency and accuracy of the presented method, several computer simulations and practical experiments were conducted with power multi-frequency signals. Results show that the proposed method can reduce the computation load efficiently and gives a high parameter estimation accuracy of power harmonic

    Statistical properties of real-time amplitude estimate of harmonics affected by frequency instability

    Get PDF
    Abstract This work deals with the statistical characterization of real-time digital measurement of the amplitude of harmonics affected by frequency instability. In fact, in modern power systems both the presence of harmonics and frequency instability are well-known and widespread phenomena mainly due to nonlinear loads and distributed generation, respectively. As a result, real-time monitoring of voltage/current frequency spectra is of paramount importance as far as power quality issues are addressed. Within this framework, a key point is that in many cases real-time continuous monitoring prevents the application of sophisticated algorithms to extract all the information from the digitized waveforms because of the required computational burden. In those cases only simple evaluations such as peak search of discrete Fourier transform are implemented. It is well known, however, that a slight change in waveform frequency results in lack of sampling synchronism and uncertainty in amplitude estimate. Of course the impact of this phenomenon increases with the order of the harmonic to be measured. In this paper an approximate analytical approach is proposed in order to describe the statistical properties of the measured magnitude of harmonics affected by frequency instability. By providing a simplified description of the frequency behavior of the windows used against spectral leakage, analytical expressions for mean value, variance, cumulative distribution function, and probability density function of the measured harmonics magnitude are derived in closed form as functions of waveform frequency treated as a random variable

    New Method for Spectral Leakage Reduction in the FFT of Stator Currents: Application to the Diagnosis of Bar Breakages in Cage Motors Working at Very Low Slip

    Full text link
    [EN] Motor current signature analysis has become a widespread fault diagnosis technique for induction machines (IMs), because it is noninvasive and requires low resources of hardware (a current sensor) and software (a fast Fourier transform). Nevertheless, its industrial application faces practical problems. One of its most challenging scenarios is the detection of broken bars in IMs working at very low slip, like large machines with a very small rated slip, or unloaded induction motors in off-line tests. In these cases, the leakage of the main supply component can hide the fault harmonics, even with a severe fault. Diverse solutions to this problem have been proposed, such as the use of smoothing windows, advanced spectral estimators, or the removal of the supply component. Nevertheless, these methods modify the spectral content of the current signal or add a high computational burden. In this work, a new approach is proposed, based on the analysis of the current with a very fine spectrum, obtained via simple zero padding, followed by the extraction of a practically leakage-free conventional, coarse spectrum. The method is experimentally validated by the diagnosis of a broken bar fault in a 3.15-MW induction motor.This work was supported in part by the Spanish "Ministerio de Ciencia, Innovacion y Universidades (MCIU)," in part by the "Agencia Estatal de Investigacion (AEI)," and in part by the "Fondo Europeo de Desarrollo Regional (FEDER)" in the framework of the "Proyectos I+D+i-Retos Investigacion 2018," Project under Grant RTI2018-102175-BI00 (MCIU/AEI/FEDER, UE). The Associate Editor coordinating the review process was Hongrui Wang. (Corresponding author: Manuel Pineda-Sanchez.)Puche-Panadero, R.; Martinez-Roman, J.; Sapena-Bano, A.; Burriel-Valencia, J.; Pineda-Sanchez, M.; Pérez-Cruz, J.; Riera-Guasp, M. (2021). New Method for Spectral Leakage Reduction in the FFT of Stator Currents: Application to the Diagnosis of Bar Breakages in Cage Motors Working at Very Low Slip. IEEE Transactions on Instrumentation and Measurement. 70:1-11. https://doi.org/10.1109/TIM.2021.30567411117
    corecore