1,165 research outputs found

    Pipeline Health Monitoring to Optimise Plant Efficiency

    Get PDF
    This chapter presents technological innovations that support asset integrity management—a crucial activity for optimising plant efficiency. In ageing thermal and geothermal power plants, critical assets such as steam piping are subject to high pressures and temperatures that accelerate damage mechanisms. Traditionally, the critical locations of these assets undergo routine inspection which is both costly and time consuming and affects the plant reliability and energy availability. There is an increasing trend in the application of non-destructive testing (NDT) and information technologies to in-service monitoring of these assets. The aim of this chapter is to provide a comprehensive overview of the state-of-the-art monitoring technologies for steamlines, with a focus on high temperature ultrasonic guided wave techniques. The enabling technologies, which include high temperature sensors, diagnostic data analysis algorithms and their monitoring performances, are reviewed. These technological advancements enable inspection without interruption of plant operations, and provide diagnosis and prognosis data for condition-based maintenance, increasing plant safety and its operational efficiency

    Rail Diagnostics Based on Ultrasonic Guided Waves: An Overview

    Get PDF
    Rail tracks undergo massive stresses that can affect their structural integrity and produce rail breakage. The last phenomenon represents a serious concern for railway management authorities, since it may cause derailments and, consequently, losses of rolling stock material and lives. Therefore, the activities of track maintenance and inspection are of paramount importance. In recent years, the use of various technologies for monitoring rails and the detection of their defects has been investigated; however, despite the important progresses in this field, substantial research efforts are still required to achieve higher scanning speeds and improve the reliability of diagnostic procedures. It is expected that, in the near future, an important role in track maintenance and inspection will be played by the ultrasonic guided wave technology. In this manuscript, its use in rail track monitoring is investigated in detail; moreover, both of the main strategies investigated in the technical literature are taken into consideration. The first strategy consists of the installation of the monitoring instrumentation on board a moving test vehicle that scans the track below while running. The second strategy, instead, is based on distributing the instrumentation throughout the entire rail network, so that continuous monitoring in quasi-real-time can be obtained. In our analysis of the proposed solutions, the prototypes and the employed methods are described

    Structural Health Monitoring (SHM) and Determination of Surface Defects in Large Metallic Structures using Ultrasonic Guided Waves

    Get PDF
    Ultrasonic guided wave (UGW) is one of the most commonly used technologies for non-destructive evaluation (NDE) and structural health monitoring (SHM) of structural components. Because of its excellent long-range diagnostic capability, this method is effective in detecting cracks, material loss, and fatigue-based defects in isotropic and anisotropic structures. The shape and orientation of structural defects are critical parameters during the investigation of crack propagation, assessment of damage severity, and prediction of remaining useful life (RUL) of structures. These parameters become even more important in cases where the crack intensity is associated with the safety of men, environment, and material, such as ship’s hull, aero-structures, rail tracks and subsea pipelines. This paper reviews the research literature on UGWs and their application in defect diagnosis and health monitoring of metallic structures. It has been observed that no significant research work has been convened to identify the shape and orientation of defects in plate-like structures. We also propose an experimental research work assisted by numerical simulations to investigate the response of UGWs upon interaction with cracks in different shapes and orientations. A framework for an empirical model may be considered to determine these structural flaws

    Response of Gaussian-modulated guided wave in aluminum: An analytical, numerical, and experimental study

    Get PDF
    The application of guided-wave ultrasonic testing in structural health monitoring has been widely accepted. Comprehensive experimental works have been performed in the past but their validation with possible analytical and numerical solutions still requires serious efforts. In this paper, behavior and detection of the Gaussian-modulated sinusoidal guided-wave pulse traveling in an aluminum plate are presented. An analytical solution is derived for sensing guided wave at a given distance from the actuator. This solution can predict the primary wave modes separately. Numerical analysis is also carried out in COMSOL® Multiphysics software. An experimental setup comprising piezoelectric transducers is used for the validation. Comparison of experimental results with those obtained from analytical and numerical solutions shows close agreement
    • …
    corecore