604 research outputs found

    Evaluating pointing errors on ergodic capacity of DF relay-assisted FSO communication systems

    Get PDF
    Ergodic capacity of decode-and-forward (DF) relay-assisted free-space optical (FSO) communication systems when line of sight is available is analyzed over gamma-gamma fading channels with pointing errors. Novel closed-form approximate ergodic capacity expression is obtained in terms of the H-Fox function for a 3-way FSO communication system when the α-μ distribution to efficiently approximate the probability density function (PDF) of the sum of gamma-gamma with pointing errors variates is considered. Moreover, we present a novel asymptotic expression at high signal-to-noise ratio (SNR) for the ergodic capacity of DF relay-assisted FSO systems. The main contribution in this work lies in an in-depth analysis about the impact of pointing errors on the ergodic capacity for cooperative FSO systems. In order to maintain the same performance in terms of capacity, it is corroborated that the presence of pointing errors requires an increase in SNR, which is related to the fraction of the collected power at the receive aperture, i.e. A 0 . Simulation results are further demonstrated to confirm the accuracy and usefulness of the derived results.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. The authors wish to acknowledge the financial support given by Spanish MINECO Project TEC2012-32606

    Experimental Investigation of All-Optical Relay-Assisted 10 Gb/s FSO Link Over the Atmospheric Turbulence Channel

    Get PDF
    This paper presents novel experimental results for a 10 Gb/s triple-hop relay-based all-optical free space optical (FSO) system by employing the amplify-and-forward relaying scheme. We provide a mathematical framework for the end-end signal-to-noise ratio (SNR) and the bit-error rate (BER) performance and confirm that the derived analytical results reasonably match experimental results especially at relatively high SNR. The evaluated BER performances under different atmospheric turbulence regimes (modeled by the Gamma-Gamma distribution) show that the considered relay-assisted FSO system offers a significant performance improvement for weak-to-strong turbulence regimes, even without knowledge of the channel state information. More precisely, at a target BER of 10-5, the proposed scheme offers ~5 and ~4 dB of SNR gains compared to the direct transmission for turbulence strengths Cn2 of 3.8 Ă— 10-10 m-2/3 and 5.4 Ă— 10-12 m-2/3, respectively

    The improvement of fiber-detection method to enhance the output of amplify-received relaying on FSO communications

    Get PDF
    The performance of free-space optical (FSO) communications that using an optical amplifier (OA) in the scheme of an amplify-received (AR)-relaying has a major drawback in the detection of input signal quality under the effects of turbulence. As an OA is based on a fiber-detection (FD) method to receive and delivers a signal at the amplification process stage, there is an opportunity to implement an optical filter to improve the quality of the input signal. In this paper, as the continuation of previous work on improvement of direct-detection, the optical filter is applied on the AR-relaying of optical signal detection, implementing an OA in the receiver. The novelty proposed in this work is the improvement of FD method where the OF is designed as the integration of cone reflector, pinhole and multi-mode fiber with an OA. The optical filter produces an optical signal, the input of the OA, which minimizes the effects of turbulence, background noise and the fluctuation of the signal spectral. Thus, OA in AR-relaying produces signal output with high power and rise up below threshold level. Additionally, an OF with a lower pinhole diameter produces the best quality of the signal spectral to be delivered into an EDFA. Through this implementation, the performance of optical relaying network on FSO can be significantly improved
    • …
    corecore