41 research outputs found

    Algorithms for Constructing Overlay Networks For Live Streaming

    Full text link
    We present a polynomial time approximation algorithm for constructing an overlay multicast network for streaming live media events over the Internet. The class of overlay networks constructed by our algorithm include networks used by Akamai Technologies to deliver live media events to a global audience with high fidelity. We construct networks consisting of three stages of nodes. The nodes in the first stage are the entry points that act as sources for the live streams. Each source forwards each of its streams to one or more nodes in the second stage that are called reflectors. A reflector can split an incoming stream into multiple identical outgoing streams, which are then sent on to nodes in the third and final stage that act as sinks and are located in edge networks near end-users. As the packets in a stream travel from one stage to the next, some of them may be lost. A sink combines the packets from multiple instances of the same stream (by reordering packets and discarding duplicates) to form a single instance of the stream with minimal loss. Our primary contribution is an algorithm that constructs an overlay network that provably satisfies capacity and reliability constraints to within a constant factor of optimal, and minimizes cost to within a logarithmic factor of optimal. Further in the common case where only the transmission costs are minimized, we show that our algorithm produces a solution that has cost within a factor of 2 of optimal. We also implement our algorithm and evaluate it on realistic traces derived from Akamai's live streaming network. Our empirical results show that our algorithm can be used to efficiently construct large-scale overlay networks in practice with near-optimal cost

    Efficient and Effective Schemes for Streaming Media Delivery

    Get PDF
    The rapid expansion of the Internet and the increasingly wide deployment of wireless networks provide opportunities to deliver streaming media content to users at anywhere, anytime. To ensure good user experience, it is important to battle adversary effects, such as delay, loss and jitter. In this thesis, we first study efficient loss recovery schemes, which require pure XOR operations. In particular, we propose a novel scheme capable of recovering up to 3 packet losses, and it has the lowest complexity among all known schemes. We also propose an efficient algorithm for array codes decoding, which achieves significant throughput gain and energy savings over conventional codes. We believe these schemes are applicable to streaming applications, especially in wireless environments. We then study quality adaptation schemes for client buffer management. Our control-theoretic approach results in an efficient online rate control algorithm with analytically tractable performance. Extensive experimental results show that three goals are achieved: fast startup, continuous playback in the face of severe congestion, and maximal quality and smoothness over the entire streaming session. The scheme is later extended to streaming with limited quality levels, which is then directly applicable to existing systems

    Algorithms for interactive, distributed and networked systems

    Get PDF
    In recent years, massive growth in internet usage has spurred the emergence of complex large-scale networking systems to serve growing user bases, bandwidth and computation requirements. For example, data center facilities -- workhorses of today's internet -- have evolved to house upward of several hundreds of thousands of servers; content distribution networks with high capacity and wide coverage have emerged as a de facto content dissemination modality, and peer-to-peer applications with hundreds of thousands of users are increasingly becoming popular. At these scales, it becomes critical to operate at high efficiencies as the price of idling resources can be significant. In particular, the interaction between agents (servers, peers etc.) is a defining factor of efficiency in these systems -- applications are often communication intensive, whereas agents share links of only limited bandwidth. This necessitates the use of principled algorithms, as efficient communication to a large extent depends on the interaction protocols. We study data center networks and peer-to-peer networks as canonical examples of modern-day large-scale networking systems. Server-to-server interaction is an integral part of the data center's operation. The latency of these interactions is often a significant bottleneck toward overall job completion times. We study complementary approaches toward reducing this latency: (i) design of computation algorithms that minimize interaction and (ii) optimal scheduling algorithms to maximally utilize the network fabric. We also consider peer-to-peer networks as an emerging mode of content distribution and sharing. Unlike data centers, these networks are flexible in their network structure and also scale well, but require decentralized algorithms for control. Of central importance here is the design of a network topology that enables efficient peer interactions for optimal application performance. We propose novel topology designs for two popular applications: (i) multimedia streaming and (ii) anonymity in Bitcoin's peer-to-peer network

    Securing Multi-Layer Communications: A Signal Processing Approach

    Get PDF
    Security is becoming a major concern in this information era. The development in wireless communications, networking technology, personal computing devices, and software engineering has led to numerous emerging applications whose security requirements are beyond the framework of conventional cryptography. The primary motivation of this dissertation research is to develop new approaches to the security problems in secure communication systems, without unduly increasing the complexity and cost of the entire system. Signal processing techniques have been widely applied in communication systems. In this dissertation, we investigate the potential, the mechanism, and the performance of incorporating signal processing techniques into various layers along the chain of secure information processing. For example, for application-layer data confidentiality, we have proposed atomic encryption operations for multimedia data that can preserve standard compliance and are friendly to communications and delegate processing. For multimedia authentication, we have discovered the potential key disclosure problem for popular image hashing schemes, and proposed mitigation solutions. In physical-layer wireless communications, we have discovered the threat of signal garbling attack from compromised relay nodes in the emerging cooperative communication paradigm, and proposed a countermeasure to trace and pinpoint the adversarial relay. For the design and deployment of secure sensor communications, we have proposed two sensor location adjustment algorithms for mobility-assisted sensor deployment that can jointly optimize sensing coverage and secure communication connectivity. Furthermore, for general scenarios of group key management, we have proposed a time-efficient key management scheme that can improve the scalability of contributory key management from O(log n) to O(log(log n)) using scheduling and optimization techniques. This dissertation demonstrates that signal processing techniques, along with optimization, scheduling, and beneficial techniques from other related fields of study, can be successfully integrated into security solutions in practical communication systems. The fusion of different technical disciplines can take place at every layer of a secure communication system to strengthen communication security and improve performance-security tradeoff

    Peer-to-peer television for the IP multimedia subsystem

    Get PDF
    Peer-to-peer (P2P) video streaming has generated a significant amount of interest in both the research community and the industry, which find it a cost-effective solution to the user scalability problem. However, despite the success of Internet-based applications, the adoption has been limited for commercial services, such as Internet Protocol Television (IPTV). With the advent of the next-generation-networks (NGN) based on the IP Multimedia Subsystem (IMS), advocating for an open and inter-operable architecture, P2P emerges as a possible alternative in situations where the traditional mechanisms are not possible or economically feasible. This work proposes a P2P IPTV architecture for an IMS-based NGN, called P2PTV, which allows one or more service providers to use a common P2P infrastructure for streaming the TV channels to their subscribers. Instead of using servers, we rely on the uploading capabilities of the user equipments, like set-top boxes, located at the customers’ premise. We comply with the existing IMS and IPTV standards from the 3rd Generation Partnership Project (3GPP) and the Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN) bodies, where a centralized P2PTV application server (AS) manages the customer access to the service and the peer participation. Because watching TV is a complex and demanding user activity, we face two significant challenges. The first is to accommodate the mandatory IMS signaling, which reserves in the network the necessary QoS resources during every channel change, establishing a multimedia session between communicating peers. The second is represented by the streaming interruptions, or churn, when the uploading peer turns off or changes its current TV channel. To tackle these problems, we propose two enhancements. A fast signaling method, which uses inactive uploading sessions with reserved but unused QoS, to improve the tuning delay for new channel users. At every moment, the AS uses a feedback based algorithm to compute the number of necessary sessions that accommodates well the demand, while preventing the over-reservation of resources. We approach with special care mobility situations, where a proactive transfer of the multimedia session context using the IEEE 802.21 standard offers the best alternative to current methods. The second enhancement addresses the peer churn during channel changes. With every TV channel divided into a number of streams, we enable peers to download and upload streams different from their current channel, increasing the stability of their participation. Unlike similar work, we benefit from our estimation of the user demand and propose a decentralized method for a balanced assignment of peer bandwidth. We evaluate the performance of the P2PTV through modeling and large-scale computer simulations. A simpler experimental setting, with pure P2P streaming, indicates the improvements over the delay and peer churn. In more complex scenarios, especially with resource-poor peers having a limited upload capacity, we envision P2P as a complementary solution to traditional approaches like IP multicast. Reserving P2P for unpopular TV channels exploits the peer capacity and prevents the necessity of a large number of sparsely used multicast trees. Future work may refine the AS algorithms, address different experimental scenarios, and extend the lessons learned to non-IMS networks. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------La transmisión de vídeo con tecnologías peer-to-peer (P2P) ha generado un gran interés, tanto en la industria como en la comunidad científica, quienes han encontrado en dicha unión la solución para afrontar los problemas de escalabilidad de la transmisión de vídeo, reduciendo al mismo tiempo sus costes. A pesar del éxito de estos mecanismos en Internet, la transmisión de vídeo mediante técnicas P2P no se ha utilizado en servicios comerciales como puede ser el de televisión por IP (IPTV). Con la aparición de propuestas de redes de próxima generación basadas en el IP Multimedia Subsystem (IMS), que permite una arquitectura abierta e interoperable, los mecanismos basados en P2P emergen como posibles alternativas en situaciones donde los mecanismos tradicionales de transmisión de vídeo no se pueden desplegar o no son económicamente viables. Esta tesis propone una arquitectura de servicio de televisión peer-to-peer para una red de siguiente generación basada en IMS, que abreviaremos como P2PTV, que permite a uno o más proveedores de servicio utilizar una infraestructura P2P común para la transmisión de canales de TV a sus suscriptores. En vez de utilizar varios servidores, proponemos utilizar la capacidad de envío de los equipos de usuario, como los set-top boxes, localizados en el lado del cliente. En esta tesis extendemos los trabajos de estandarización sobre IMS IPTV de los organismos 3rd Generation Partnership Project (3GPP) y del Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN), donde un servidor de aplicación (AS) central de P2PTV administra el acceso de los clientes al servicio y permite compartir los recursos de los equipos. Debido a que el acceso a los canales de TV por parte de los usuarios es una actividad compleja, nos enfrentamos a dos retos importantes. El primero es administrar la señalización de IMS, con la cual se reservan los recursos de QoS necesarios durante cada cambio de canal, estableciendo una sesión multimedia entre los diferentes elementos de la comunicación. El segundo está representado por las interrupciones de la reproducción de video, causado por los equipos que sirven dicho vídeo cuando estos se desconectan del sistema o cuando cambian de canal. Para afrontar estos retos, proponemos dos mejoras al sistema. La primera mejora introduce el método de señalización rápida, en la cual se utilizan sesiones multimedia inactivas pero con recursos reservados para acelerar las conexiones entre usuarios. En cada momento, el AS utiliza la información extraída del algoritmo propuesto, que calcula el número de sesiones necesarias para administrar la demanda de conexiones, pero sin realizar una sobre-estimación, manteniendo bajo el uso de los recursos. Hemos abordado con especial cuidado la movilidad de los usuarios, donde se ha propuesto una transferencia de sesión pro-activa utilizando el estándar IEEE 802.21, el cual brinda una mejor alternativa que los métodos propuestos hasta la fecha. La segunda mejora se enfoca en las desconexiones de usuarios durante cambios de canal. Dividiendo los canales de TV en varios segmentos, permitimos a los equipos descargar o enviar diferentes partes de cualquier canal, aumentando la estabilidad de su participación. A diferencia de otros trabajos, nuestra propuesta se beneficia de la estimación de la demanda futura de los usuarios, proponiendo un método descentralizado para una asignación balanceada del ancho de banda de los equipos. Hemos evaluado el rendimiento del sistema P2PTV a través de modelado y de simulaciones de ordenador en sistemas IPTV de gran escala. Una configuración simple, con envío P2P puro, indica mejoras en el retardo y número de desconexiones de usuarios. En escenarios más complejos, especialmente con equipos con pocos recursos en la subida, sugerimos el uso de P2P como una solución complementaria a las soluciones tradicionales de multicast IP. Reservando el uso de P2P para los canales de TV poco populares, se permite explotar los recursos de los equipos y se previene la necesidad de un alto número de árboles multicast dispersos. Como trabajo futuro, se propone refinar los algoritmos del AS, abordar diferentes escenarios experimentales y también extender las lecciones aprendidas en esta tesis a otros sistemas no basados en IMS

    Peer-to-peer multimedia communication

    Get PDF
    I sistemi Peer-to-Peer (P2P) sono stati inventi, messi in campo e studiati da più di dieci anni, andando al di là della semplice applicazione per scambio di file. Nelle reti P2P i partecipanti si organizzano in una rete "overlay" che è astratta rispetto alle caratteristiche della sottostante rete fisica. Scopo di questi sistemi è la distribuzione di risorse quali contenuti, spazio di memorizzazione o cicli macchina. Gli utenti quindi giocano un ruolo attivo e possono essere considerati come sia clienti che serventi allo stesso tempo per il particolare servizio che la rete P2P offre. Lo scopo di questa tesi di dottorato è lo studio di questi sistemi ed il dare un contributo nella loro analisi prestazionale. L'analisi mira a valutare le prestazioni raggiunte dai sistemi e/o i limiti teorici raggiungibili. Infatti, nonostante esistano diversi meccanismi per il peer-to-peer streaming, l'analisi prestazionale di questo tipo di sistemi può essere considerata ancora nella sua infanzia. A questo scopo, i contributi principali di questa tesi di dottorato sono: i)la derivazione di un limite teorico per il ritardo nei sistemi di P2P streaming, ii) la creazione di un algoritmo che sfrutti le conoscenze acquisite attraverso il lavoro teorico, iii) l'analisi prestazionale dell'algoritmo utilizzando un simulatore espressamente progettato per riprodurre le caratteristiche delle reti P2P reali composte da centinaia di migliaia di nodi che si connettono e disconnettono in continuazione.Peer-to-Peer (P2P) systems have been invented, deployed and researched for more than ten years and went far beyond the simple file sharing applications. In P2P networks, participants organize themselves in an overlay network that abstracts from the topological characteristics of the underlying physical network. Aim of these systems is the distribution of some kind of resources like contents, storage, or CPU cycles. Users, therefore, play an active role so that they can be considered as client and server at the same time, for the particular service that is provided through the P2P paradigm. Goal of this dissertation thesis is to study these systems, and give contributes in their performance evaluation. The analysis will aim to evaluate the achieved performance of a system and/or the performance bounds that could be achievable. In fact, even if there are several proposals of different systems, peer-to-peer streaming performance analysis can be considered still in its infancy and there is still a lot of work to do. To this aim, the main contributes of this dissertation thesis are i) the derivation of a theoretical delay bounds for P2P streaming system ii) II the creation of an algorithm that exploits the new insights that come out from the theoretical study iii) the performance evaluation of this algorithm using an ad-hoc simulator, expressly tailored to reproduce the characteristics of the real-world P2P streaming systems, composed by hundred thousands of intermittently connected users

    Proceedings of the Fifth International Mobile Satellite Conference 1997

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial communications services. While previous International Mobile Satellite Conferences have concentrated on technical advances and the increasing worldwide commercial activities, this conference focuses on the next generation of mobile satellite services. The approximately 80 papers included here cover sessions in the following areas: networking and protocols; code division multiple access technologies; demand, economics and technology issues; current and planned systems; propagation; terminal technology; modulation and coding advances; spacecraft technology; advanced systems; and applications and experiments

    Best effort measurement based congestion control

    Get PDF
    Abstract available: p.

    End-to-End Resilience Mechanisms for Network Transport Protocols

    Get PDF
    The universal reliance on and hence the need for resilience in network communications has been well established. Current transport protocols are designed to provide fixed mechanisms for error remediation (if any), using techniques such as ARQ, and offer little or no adaptability to underlying network conditions, or to different sets of application requirements. The ubiquitous TCP transport protocol makes too many assumptions about underlying layers to provide resilient end-to-end service in all network scenarios, especially those which include significant heterogeneity. Additionally the properties of reliability, performability, availability, dependability, and survivability are not explicitly addressed in the design, so there is no support for resilience. This dissertation presents considerations which must be taken in designing new resilience mechanisms for future transport protocols to meet service requirements in the face of various attacks and challenges. The primary mechanisms addressed include diverse end-to-end paths, and multi-mode operation for changing network conditions

    Incentive-driven QoS in peer-to-peer overlays

    Get PDF
    A well known problem in peer-to-peer overlays is that no single entity has control over the software, hardware and configuration of peers. Thus, each peer can selfishly adapt its behaviour to maximise its benefit from the overlay. This thesis is concerned with the modelling and design of incentive mechanisms for QoS-overlays: resource allocation protocols that provide strategic peers with participation incentives, while at the same time optimising the performance of the peer-to-peer distribution overlay. The contributions of this thesis are as follows. First, we present PledgeRoute, a novel contribution accounting system that can be used, along with a set of reciprocity policies, as an incentive mechanism to encourage peers to contribute resources even when users are not actively consuming overlay services. This mechanism uses a decentralised credit network, is resilient to sybil attacks, and allows peers to achieve time and space deferred contribution reciprocity. Then, we present a novel, QoS-aware resource allocation model based on Vickrey auctions that uses PledgeRoute as a substrate. It acts as an incentive mechanism by providing efficient overlay construction, while at the same time allocating increasing service quality to those peers that contribute more to the network. The model is then applied to lagsensitive chunk swarming, and some of its properties are explored for different peer delay distributions. When considering QoS overlays deployed over the best-effort Internet, the quality received by a client cannot be adjudicated completely to either its serving peer or the intervening network between them. By drawing parallels between this situation and well-known hidden action situations in microeconomics, we propose a novel scheme to ensure adherence to advertised QoS levels. We then apply it to delay-sensitive chunk distribution overlays and present the optimal contract payments required, along with a method for QoS contract enforcement through reciprocative strategies. We also present a probabilistic model for application-layer delay as a function of the prevailing network conditions. Finally, we address the incentives of managed overlays, and the prediction of their behaviour. We propose two novel models of multihoming managed overlay incentives in which overlays can freely allocate their traffic flows between different ISPs. One is obtained by optimising an overlay utility function with desired properties, while the other is designed for data-driven least-squares fitting of the cross elasticity of demand. This last model is then used to solve for ISP profit maximisation
    corecore