2,470 research outputs found

    Folding and Assembly of Multimeric Proteins: Dimeric HIV-1 Protease and a Trimeric Coiled Coil Component of a Complex Hemoglobin Scaffold: A Dissertation

    Get PDF
    Knowledge of how a polypeptide folds from a space-filling random coil into a biologically-functional, three-dimensional structure has been the essence of the protein folding problem. Though mechanistic details of DNA transcription and RNA translation are well understood, a specific code by which the primary structure dictates the acquisition of secondary, tertiary, and quarternary structure remains unknown. However, the demonstrated reversibility of in vitroprotein folding allows for a thermodynamic analysis of the folding reaction. By probing both the equilibrium and kinetics of protein folding, a protein folding mechanism can be postulated. Over the past 40 years, folding mechanisms have been determined for many proteins; however, a generalized folding code is far from clear. Furthermore, most protein folding studies have focused on monomeric proteins even though a majority of biological processes function via the association of multiple subunits. Consequently, a complete understanding of the acquisition of quarternary protein structure is essential for applying the basic principles of protein folding to biology. The studies presented in this dissertation examined the folding and assembly of two very different multimeric proteins. Underlying both of these investigations is the need for a combined analysis of a repertoire of approaches to dissect the folding mechanism for multimeric proteins. Chapter II elucidates the detailed folding energy landscape of HIV-1 protease, a dimeric protein containing β-barrel subunits. The folding of this viral enzyme exhibited a sequential three-step pathway, involving the rate-limiting formation of a monomeric intermediate. The energetics determined from this analysis and their applications to HIV-1 function are discussed. In contrast, Chapter III illustrates the association of a coiled coil component of L. terrestriserythrocruorin. This extracellular hemoglobin consists of a complex scaffold of linker chains with a central ring of interdigitating coiled coils. Allostery is maintained by twelve dodecameric hemoglobin subunits that dock upon this scaffold. Modest association was observed for this coiled coil, and the implications of this fragment to linker assembly are addressed. These studies depict the complexity of multimeric folding reactions. Chapter II demonstrates that a detailed energy landscape of a dimeric protein can be determined by combining traditional equilibrium and kinetic approaches with information from a global analysis of kinetics and a monomer construct. Chapter III indicates that fragmentation of large complexes can show the contributions of separate domains to hierarchical organization. As a whole, this dissertation highlights the importance of pursuing mulitmeric protein folding studies and the implications of these folding mechanisms to biological function

    Frustration in Biomolecules

    Get PDF
    Biomolecules are the prime information processing elements of living matter. Most of these inanimate systems are polymers that compute their structures and dynamics using as input seemingly random character strings of their sequence, following which they coalesce and perform integrated cellular functions. In large computational systems with a finite interaction-codes, the appearance of conflicting goals is inevitable. Simple conflicting forces can lead to quite complex structures and behaviors, leading to the concept of "frustration" in condensed matter. We present here some basic ideas about frustration in biomolecules and how the frustration concept leads to a better appreciation of many aspects of the architecture of biomolecules, and how structure connects to function. These ideas are simultaneously both seductively simple and perilously subtle to grasp completely. The energy landscape theory of protein folding provides a framework for quantifying frustration in large systems and has been implemented at many levels of description. We first review the notion of frustration from the areas of abstract logic and its uses in simple condensed matter systems. We discuss then how the frustration concept applies specifically to heteropolymers, testing folding landscape theory in computer simulations of protein models and in experimentally accessible systems. Studying the aspects of frustration averaged over many proteins provides ways to infer energy functions useful for reliable structure prediction. We discuss how frustration affects folding, how a large part of the biological functions of proteins are related to subtle local frustration effects and how frustration influences the appearance of metastable states, the nature of binding processes, catalysis and allosteric transitions. We hope to illustrate how Frustration is a fundamental concept in relating function to structural biology.Comment: 97 pages, 30 figure

    Using Molecular Constraints and Unnatural Amino Acids to Manipulate and Interrogate Protein Structure, Dynamics, and Self-Assembly

    Get PDF
    Protein molecules can undergo a wide variety of conformational transitions occurring over a series of time and distance scales, ranging from large-scale structural reorganizations required for folding to more localized and subtle motions required for function. Furthermore, the dynamics and mechanisms of such motions and transitions delicately depend on many factors and, as a result, it is not always easy, or even possible, to use existing experimental techniques to arrive at a molecular level understanding of the conformational event of interest. Therefore, this thesis aims to develop and utilize non-natural chemical modification strategies, namely molecular cross-linkers and unnatural amino acids as site-specific spectroscopic probes, in combination with various spectroscopic methods to examine, in great detail, certain aspects of protein folding and functional dynamics, and to manipulate protein self-assemblies. Specifically, we first demonstrate how strategically placed molecular constraints can be used to manipulate features of the protein folding free energy landscape, thus, allowing direct measurement of key components via temperature-jump kinetic studies, such as folding from a transition-state structure or the effect of internal friction on the folding mechanism. Secondly, we utilize a photolabile non-natural amino acid, Lys(nvoc), to probe the mechanism of protein misfolding in a β-hairpin model and identify an aggregation gatekeeper that tunes the aggregation propensity. We further develop a method where the induced-charge produced by photocleavage of Lys(nvoc) can be used to target and destabilize hydrophobic regions of amyloid fibril assemblies, resulting in complete disassembly, Finally, we highlight new useful properties of a site-specific spectroscopic probe, 5-cyanotryptophan (TrpCN), by demonstrating (1) how the frequency and linewidth of the infrared nitrile stretching vibration is sensitive to multiple hydrogen bonding interactions and solvent polarity, (2) that the fluorescence emission, quantum yield, and lifetime is extremely sensitive to hydration, and serves as a convenient fluorescence probe of protein solvation status, and (3) that the unique characteristics of TrpCN can be used to target the structure, local environment, and mechanism of the tryptophan gate in the M2 membrane proton channel of the influenza A virus

    A Balanced Secondary Structure Predictor

    Get PDF
    Secondary structure (SS) refers to the local spatial organization of the polypeptide backbone atoms of a protein. Accurate prediction of SS is a vital clue to resolve the 3D structure of protein. SS has three different components- helix (H), beta (E) and coil (C). Most SS predictors are imbalanced as their accuracy in predicting helix and coil are high, however significantly low in the beta. The objective of this thesis is to develop a balanced SS predictor which achieves good accuracies in all three SS components. We proposed a novel approach to solve this problem by combining a genetic algorithm (GA) with a support vector machine. We prepared two test datasets (CB471 and N295) to compare the performance of our predictors with SPINE X. Overall accuracy of our predictor was 76.4% and 77.2% respectively on CB471 and N295 datasets, while SPINE X gave 76.5% overall accuracy on both test datasets

    A Balanced Secondary Structure Predictor

    Get PDF
    Secondary structure (SS) refers to the local spatial organization of the polypeptide backbone atoms of a protein. Accurate prediction of SS is a vital clue to resolve the 3D structure of protein. SS has three different components- helix (H), beta (E) and coil (C). Most SS predictors are imbalanced as their accuracy in predicting helix and coil are high, however significantly low in the beta. The objective of this thesis is to develop a balanced SS predictor which achieves good accuracies in all three SS components. We proposed a novel approach to solve this problem by combining a genetic algorithm (GA) with a support vector machine. We prepared two test datasets (CB471 and N295) to compare the performance of our predictors with SPINE X. Overall accuracy of our predictor was 76.4% and 77.2% respectively on CB471 and N295 datasets, while SPINE X gave 76.5% overall accuracy on both test datasets

    Coarse-grained models for Protein Folding and Function

    Get PDF
    The plan of this thesis is as follows: in the next chapter (chapter 1) we review the main properties of globular proteins, in particular focusing on the state of the art of protein folding and design. Then we describe in detail the simple model for folding adopted throughout the present work (chapter 2). Chapter 3 shows the further modeling introduced to handle the specific subject of disordered proteins, with full explanation of all parameters used and with some possible interpretation of the results obtained. In the last chapter of this work (chapter 4) we present a study on the near equilibrium dynamics of two small proteins in the family of truncated hemoglobins, developed under the framework of a Gaussian network approach
    corecore