33 research outputs found

    GREEN CABBAGE (BRASSICA CAMPESTRIS) GROWTH SEEDLINGS BY OPTIMIZING OF CHICKEN MANURE CONCENTRATION IN SOIL MIXTURE

    Get PDF
    Purpose of the study: Green cabbage (Brassica campestris) is a kind of vegetable with good quality in nutrient and economical for people.  It could be planted in a small area seems like in home around.  Chicken manure was the fertilizer that could get from the farming area.  The productivity of Green cabbage through with nutrient in soil quality.  Fertilizer was one of alternative could be done for plant nutrient by simply using to against deficiency growth.  The purpose of this research is to optimize chicken manure using as fertilizer.  Optimizing was done by mixture in water solvent. Methodology: Experiment was done by quantitative research in height plant analysis.  The soil was taken from Joyo Imran Street Cabean region in Salatiga city that had 27°C degrees in daily average.  Planting was done in plastic bag consisted of chicken manure concentrations in soil at 0% (w/w); 20% (w/w); 30% (w/w); 40% (w/w); and 50% (w/w) mixture.  Height measurement was done on the 10th day after planting. Main Findings: The optimum yield was obtained on 40% (w/w) mixed variation of chicken manure.  It had a high increase in growing seedlings. Applications of this study: One of various fertilizers is creating chicken manure farmer using fertilizer in 40 % (w/w) mixture from chicken manure because this kind of fertilizer was better than other and had an economical. Novelty/Originality of this study: The fertilizing system had lacked in over, especially for decreasing soil quality and plant growth.  Therefore, optimization of used fertilizer in the soil mixture needs to be done to see the effect.  In this research optimization of the used (de Jonge et al., 2018) fertilizer in soil mix was carried out. The optimization is done to the variation of concentration of amount fertilizer to the soil in the mixture.  The analysis of the growth of green cabbage was carried out from measurements height of plant that grew with 10 days

    Preparation and Characterization of Interfacially Polymerized Polyamide Membrane for Dye Removal

    Get PDF
    Interfacial polymerization of polyamide was conducted using hydrophobic and hydrophilic membrane support. The effects of monomer concentration were investigated, and the resulting thin-film composite membranes were tested for their performance in dye removal using different flow configurations. The results showed that a dense polyamide layer was successfully formed on the hydrophilic support, while a polyamide layer with a very loose structure was formed on the hydrophobic support. The polyamide layer became smoother and more hydrophilic as the concentration of trimesoyl chloride was increased, leading to increased permeate flux and reduced dye rejection. The highest sunset yellow rejection of 45.7% with a permeate flux of 4.9 L/m2.h was obtained when the polyamide layer was formed from trimesoyl chloride concentration of 0.05 w/v% (a high amine to acid chloride monomer ratio of 20) and the filtration was in cross-flow configuration

    The Microwave-assisted Synthesis of Polyethersulfone (PES) as A Matrix in Immobilization of Candida antarctica Lipase B (Cal-B)

    Get PDF
    Candida antarctica lipase B (Cal-B) has been widely used in the hydrolysis reaction. However, it has some weaknesses, such as: forming of the heavy emulsion during the process, which is difficult to resolve and has no reusability. Therefore, it needs to be immobilized into a suitable matrix. One of the suitable supporting materials is polyethersulfone (PES) and its synthesis becames the objective of this paper. The PES was synthesized via a polycondensation reaction between hydroquinone and 4,4'-dichlorodiphenylsulfonein N-methylpyrrolidone (NMP) as solvent using Microwave Assisted Organic Synthesis (MAOS) method at170 °C for 66 minutes using an irradiation power of 300 watt. The synthesized PES was characterized by FTIR and 1H-NMR (500 MHz, DMSO-d6). Then the PES membrane was prepared from 20 % of the optimized mixtures of PES, PSf (polysulfone), and PEG (polyethylene glycol) dissolved in 80 % NMP.  The Cal-B was immobilized on the PES membrane by mixing it in a shaker at 30 °C and 100 rpm for 24 h using phosphate buffered saline (PBS). The identification of the immobilized Cal-B was done by using FTIR-ATR spectroscopy and SEM micrographs. The results of Lowry assay showed that the ‘Cal-B immobilized’ blended-membrane has a loading capacity of 91 mg/cm2 in a membrane surface area of 17.34 cm2. In this work, the activity of immobilized Cal-B was twice higher than the native enzyme in p-NP (p-Nitrophenolpalmitate) hydrolyzing. The results indicated that the synthesized PES showed a good performance when used as a matrix in the immobilization of Cal-B. Copyright © 2017 BCREC Group. All rights reserved Received: 15th November 2016; Revised: 27th May 2017; Accepted: 24th May 2017; Available online: 23rd October 2017; Published regularly: December 2017 How to Cite: Widhyahrini, K., Handayani, N., Wahyuningrum, D., Nurbaiti, S., Radiman, C.L. (2017). The Microwave-assisted Synthesis of Polyethersulfone (PES) as A Matrix in Immobilization of Candida antarctica Lipase B (Cal-B). Bulletin of Chemical Reaction Engineering & Catalysis, 12(3): 343-350 (doi:10.9767/bcrec.12.3.774.343-350

    The Microwave-assisted Synthesis of Polyethersulfone (PES) as A Matrix in Immobilization of Candida antarctica Lipase B (Cal-B)

    Get PDF
    Candida antarctica lipase B (Cal-B) has been widely used in the hydrolysis reaction. However, it has some weaknesses, such as: forming of the heavy emulsion during the process, which is difficult to resolve and has no reusability. Therefore, it needs to be immobilized into a suitable matrix. One of the suitable supporting materials is polyethersulfone (PES) and its synthesis becames the objective of this paper. The PES was synthesized via a polycondensation reaction between hydroquinone and 4,4'-dichlorodiphenylsulfonein N-methylpyrrolidone (NMP) as solvent using Microwave Assisted Organic Synthesis (MAOS) method at170 °C for 66 minutes using an irradiation power of 300 watt. The synthesized PES was characterized by FTIR and 1H-NMR (500 MHz, DMSO-d6). Then the PES membrane was prepared from 20 % of the optimized mixtures of PES, PSf (polysulfone), and PEG (polyethylene glycol) dissolved in 80 % NMP.  The Cal-B was immobilized on the PES membrane by mixing it in a shaker at 30 °C and 100 rpm for 24 h using phosphate buffered saline (PBS). The identification of the immobilized Cal-B was done by using FTIR-ATR spectroscopy and SEM micrographs. The results of Lowry assay showed that the ‘Cal-B immobilized’ blended-membrane has a loading capacity of 91 mg/cm2 in a membrane surface area of 17.34 cm2. In this work, the activity of immobilized Cal-B was twice higher than the native enzyme in p-NP (p-Nitrophenolpalmitate) hydrolyzing. The results indicated that the synthesized PES showed a good performance when used as a matrix in the immobilization of Cal-B. Copyright © 2017 BCREC Group. All rights reservedReceived: 15th November 2016; Revised: 27th May 2017; Accepted: 24th May 2017; Available online: 23rd October 2017; Published regularly: December 2017How to Cite: Widhyahrini, K., Handayani, N., Wahyuningrum, D., Nurbaiti, S., Radiman, C.L. (2017). The Microwave-assisted Synthesis of Polyethersulfone (PES) as A Matrix in Immobilization of Candida antarctica Lipase B (Cal-B). Bulletin of Chemical Reaction Engineering & Catalysis, 12(3): 343-350 (doi:10.9767/bcrec.12.3.774.343-350)

    New ion exchange membrane derived from sulfochlorated polyether sulfone for electrodialysis desalination of brackish water

    Get PDF
    The purpose of this work is to study the desalination of brackish water using a new ion exchange membrane, made from sulfochlorated polyethersulfone (Cl-PES), and crosslinked using aminated polyethersulfone (NH2-PES) as a crosslinking reagent. This membrane, named ClNH2 membrane, has been obtained by reaction between Cl-PES with 1.3 SO2Cl groups per monomer unit and 0.2 equivalent amount of NH2-PES. ClNH2 membrane has been characterized in terms of contact angle, transport number, intrinsic conductivity, and water uptake (as a function of temperature). Electrodialysis performances of the newly synthetized membranes have been measured using an electrodialysis cell at a laboratory scale and compared to commercial membranes. All the experiments have been performed using synthetic brackish water solutions prepared from sodium chloride salts with different concentrations (varying from 0.5 to 5.0 g/L). The concentration of different water samples obtained has been found to be below the amount recommended by the World Health Organization (WHO) for drinking water.ERAS Labo; World Health Organizatio

    Plasma surface engineering to biofunctionalise polymers for ÎČ-cell adhesion

    Get PDF
    Implant devices containing insulin-secreting ÎČ-cells hold great promise for the treatment of diabetes. Using in vitro cell culture, long-term function and viability are enhanced when ÎČ-cells are cultured with extracellular matrix (ECM) proteins. Here, our goal is to engineer a favorable environment within implant devices, where ECM proteins are stably immobilized on polymer scaffolds, to better support ÎČ-cell adhesion. Four different polymer candidates (low-density polyethylene (LDPE), polystyrene (PS), polyethersulfone (PES) and polysulfone (PSU)) were treated using plasma immersion ion implantation (PIII) to enable the covalent attachment of laminin on their surfaces. Surface characterisation analysis shows the increased hydrophilicity, polar groups and radical density on all polymers after the treatment. Among the four polymers, PIII-treated LDPE has the highest water contact angle and the lowest radical density which correlate well with the non-significant protein binding improvement observed after 2 months of storage. The study found that the radical density created by PIII treatment of aromatic polymers was higher than that created by the treatment of aliphatic polymers. The higher radical density significantly improves laminin attachment to aromatic polymers, making them better substrates for ÎČ-cell adhesion

    Zeolites-Mixed-Matrix Nanofiltration Membranes for the Next Generation of Water Purification

    Get PDF
    Designing high performance and antifouling membranes are in a great need to remove water contaminations and to regulate the quality of drinking water. Mixed-matrix membranes (MMMs) could offer a solution to the permeability and selectivity trade-off in nanofiltration (NF) membranes. MMM could offer the physicochemical stability of a ceramic material while ensuring the desired morphology with higher nanofiltration permeability, selectivity, hydrophilicity, fouling resistance, as well as greater thermal, mechanical, and chemical strength over a wider temperature and pH range. Zeolites are fascinating and versatile materials, vital for a wide range of industries due to their unique structure, greater mechanical strength, and chemical properties. This chapter focused on zeolite-MMM for nanofiltration. Several key rules in the synthesis procedures have been comprehensively discussed for the optimum interfacial morphology between the zeolites and polymers. Furthermore, the influence of the zeolite filler incorporation has been discussed and explored for water purification. This chapter provided a broad overview of the MMM’s challenges and future improvement investigative directions

    Zeolite Mixed Matrix Membranes (Zeolite-MMMs) for Sustainable Engineering

    Get PDF
    Mixed matrix membranes (MMMs) could provide a solution to the permeability and selectivity trade-off in polymeric membranes and bridge the gap with inorganic membranes. MMM could offer the physicochemical stability of a ceramic material while ensuring the desired morphology with higher permeability, selectivity, hydrophilicity, fouling resistance, as well as greater thermal, mechanical, and chemical strength over a wider temperature and pH range. Zeolites are fascinating and versatile materials, vital for a wide range of industries due to their unique structure, greater mechanical strength, and chemical properties. This chapter focused on zeolite-MMM and characterized various zeolite-reinforced polymeric membrane types and applications. Several key rules in the synthesis procedures have been comprehensively discussed for the optimum interfacial morphology between the zeolites and polymers. Furthermore, the influence of the zeolite filler incorporation has been discussed and explored for a range of applications. This chapter provided a broad overview of the MMM’s challenges and future improvement investigative directions

    Application of Silver Nanoparticles for Water Treatment

    Get PDF
    In recent past development of silver nanoparticles and their application in the treatment of wastewaters is becoming a major area of research. It is mainly applicable to the removal of three major pollutants like pesticides, heavy metals, and microorganisms. Variety of synthesis techniques have been reported for preparation and characterization of silver nanoparticles. In our research, we synthesized Ag nanoparticles supported on ZrO2 and ZrO2-CeO2 by a “deposit-precipitation method” as the first step and later sequentially synthesized Ag-Au supported on ZrO2 and ZrO2-CeO2 by Redox method. Catalysts were evaluated in catalytic wet air oxidation (CWAO) of methyl tert-butyl ether and phenol. The CWAO is a liquid phase process for the treatment of organic pollutants operating at temperatures in the range of 100–325°C at 5–200 bar pressures. The selectivity and efficient of catalysts were evaluated by total organic carbon (TOC) and high-performance liquid chromatograph (HPLC). Ideally, the total mineralization of pollutants into CO2 and H2O is preferred
    corecore