9 research outputs found

    Generic-case complexity, decision problems in group theory and random walks

    Get PDF
    We give a precise definition of ``generic-case complexity'' and show that for a very large class of finitely generated groups the classical decision problems of group theory - the word, conjugacy and membership problems - all have linear-time generic-case complexity. We prove such theorems by using the theory of random walks on regular graphs.Comment: Revised versio

    Conjugacy in Baumslag's group, generic case complexity, and division in power circuits

    Full text link
    The conjugacy problem belongs to algorithmic group theory. It is the following question: given two words x, y over generators of a fixed group G, decide whether x and y are conjugated, i.e., whether there exists some z such that zxz^{-1} = y in G. The conjugacy problem is more difficult than the word problem, in general. We investigate the complexity of the conjugacy problem for two prominent groups: the Baumslag-Solitar group BS(1,2) and the Baumslag(-Gersten) group G(1,2). The conjugacy problem in BS(1,2) is TC^0-complete. To the best of our knowledge BS(1,2) is the first natural infinite non-commutative group where such a precise and low complexity is shown. The Baumslag group G(1,2) is an HNN-extension of BS(1,2). We show that the conjugacy problem is decidable (which has been known before); but our results go far beyond decidability. In particular, we are able to show that conjugacy in G(1,2) can be solved in polynomial time in a strongly generic setting. This means that essentially for all inputs conjugacy in G(1,2) can be decided efficiently. In contrast, we show that under a plausible assumption the average case complexity of the same problem is non-elementary. Moreover, we provide a lower bound for the conjugacy problem in G(1,2) by reducing the division problem in power circuits to the conjugacy problem in G(1,2). The complexity of the division problem in power circuits is an open and interesting problem in integer arithmetic.Comment: Section 5 added: We show that an HNN extension G = < H, b | bab^-1 = {\phi}(a), a \in A > has a non-amenable Schreier graph with respect to the base group H if and only if A \neq H \neq

    Multicoloured Random Graphs: Constructions and Symmetry

    Full text link
    This is a research monograph on constructions of and group actions on countable homogeneous graphs, concentrating particularly on the simple random graph and its edge-coloured variants. We study various aspects of the graphs, but the emphasis is on understanding those groups that are supported by these graphs together with links with other structures such as lattices, topologies and filters, rings and algebras, metric spaces, sets and models, Moufang loops and monoids. The large amount of background material included serves as an introduction to the theories that are used to produce the new results. The large number of references should help in making this a resource for anyone interested in beginning research in this or allied fields.Comment: Index added in v2. This is the first of 3 documents; the other 2 will appear in physic
    corecore