14,805 research outputs found

    Variability of the North Atlantic eddy-driven jet stream

    Get PDF
    Much of the atmospheric variability in the North Atlantic sector is associated with variations in the eddy-driven component of the zonal flow. Here we present a simple method to specifically diagnose this component of the flow using the low-level wind field (925–700 hpa ). We focus on the North Atlantic winter season in the ERA-40 reanalysis. Diagnostics of the latitude and speed of the eddy-driven jet stream are compared with conventional diagnostics of the North Atlantic Oscillation (NAO) and the East Atlantic (EA) pattern. This shows that the NAO and the EA both describe combined changes in the latitude and speed of the jet stream. It is therefore necessary, but not always sufficient, to consider both the NAO and the EA in identifying changes in the jet stream. The jet stream analysis suggests that there are three preferred latitudinal positions of the North Atlantic eddy-driven jet stream in winter. This result is in very good agreement with the application of a statistical mixture model to the two-dimensional state space defined by the NAO and the EA. These results are consistent with several other studies which identify four European/Atlantic regimes, comprising three jet stream patterns plus European blocking events

    Shapecollage: Occlusion-Aware, Example-Based Shape Interpretation

    Get PDF
    This paper presents an example-based method to interpret a 3D shape from a single image depicting that shape. A major difficulty in applying an example-based approach to shape interpretation is the combinatorial explosion of shape possibilities that occur at occluding contours. Our key technical contribution is a new shape patch representation and corresponding pairwise compatibility terms that allow for flexible matching of overlapping patches, avoiding the combinatorial explosion by allowing patches to explain only the parts of the image they best fit. We infer the best set of localized shape patches over a graph of keypoints at multiple scales to produce a discontinuous shape representation we term a shape collage. To reconstruct a smooth result, we fit a surface to the collage using the predicted confidence of each shape patch. We demonstrate the method on shapes depicted in line drawing, diffuse and glossy shading, and textured styles.National Science Foundation (U.S.) (Grant 1111415)United States. Office of Naval Research (Grant N00014-09-1-1051)National Institutes of Health (U.S.) (Grant R01-EY019262

    Vision, Action, and Make-Perceive

    Get PDF
    In this paper, I critically assess the enactive account of visual perception recently defended by Alva Noë (2004). I argue inter alia that the enactive account falsely identifies an object’s apparent shape with its 2D perspectival shape; that it mistakenly assimilates visual shape perception and volumetric object recognition; and that it seriously misrepresents the constitutive role of bodily action in visual awareness. I argue further that noticing an object’s perspectival shape involves a hybrid experience combining both perceptual and imaginative elements – an act of what I call ‘make-perceive.

    The light-from-above prior is intact in autistic children

    Get PDF
    Sensory information is inherently ambiguous. The brain disambiguates this information by anticipating or predicting the sensory environment based on prior knowledge. Pellicano and Burr (2012) proposed that this process may be atypical in autism and that internal assumptions, or “priors,” may be underweighted or less used than in typical individuals. A robust internal assumption used by adults is the “light-from-above” prior, a bias to interpret ambiguous shading patterns as if formed by a light source located above (and slightly to the left) of the scene. We investigated whether autistic children (n = 18) use this prior to the same degree as typical children of similar age and intellectual ability (n = 18). Children were asked to judge the shape (concave or convex) of a shaded hexagon stimulus presented in 24 rotations. We estimated the relation between the proportion of convex judgments and stimulus orientation for each child and calculated the light source location most consistent with those judgments. Children behaved similarly to adults in this task, preferring to assume that the light source was from above left, when other interpretations were compatible with the shading evidence. Autistic and typical children used prior assumptions to the same extent to make sense of shading patterns. Future research should examine whether this prior is as adaptable (i.e., modifiable with training) in autistic children as it is in typical adults

    A rigorous and realistic Shape From Shading method and some of its applications

    Get PDF
    This article proposes a rigorous and realistic solution of the Lambertian Shape From Shading (SFS) problem. The power of our approach is threefolds. First, our work is based on a rigorous mathematical method: we define a new notion of weak solutions (in the viscosity sense) which does not necessarily requires boundary data (contrary to the work of [rouy-tourin:92,prados-faugeras-etal:02,prados-faugeras:03,camilli-falcone:96,falcone-sagona-etal:01]) and which allows to define a solution as soon as the image is (Lipschitz) continuous (contrary to the work of [oliensis:91,dupuis-oliensis:94]). We prove the existence and uniqueness of this (new) solution and we approximate it by using a provably convergent algorithm. Second, it improves the applicability of the SFS to real images: we complete the realistic work of [prados-faugeras:03,tankus-sochen-etal:03], by modeling the problem with a pinhole camera and with a single point light source located at the optical center. This new modelization appears very relevant for applications. Moreover, our algorithm can deal with images containing discontinuities and black shadows. It is very robust to pixel noise and to errors on parameters. It is also generic: i.e. we propose a unique algorithm which can compute numerical solutions of the various perspective and orthographic SFS models. Finally, our algorithm seems to be the most efficient iterative algorithm of the SFS literature. Third, we propose three applications (in three different areas) based on our SFS method
    corecore